Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0.\)
TH1 :
\(\orbr{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>2\\x>\left(-\frac{2}{3}\right)\end{cases}}\)
\(\Rightarrow x>2\)
TH2 :
\(\orbr{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}}\)
\(\Rightarrow x< -\frac{2}{3}\)
=> x > 2 hoặc x < -2/3 (tmđk)
(Bạn tự vẽ hình giùm)
1/ \(\Delta ABC\)vuông tại A
=> \(BC^2=AB^2+AC^2\)(định lý Pitago)
=> \(BC^2=9^2+6^2\)
=> \(BC^2=9+36\)
=> \(BC^2=45\)
=> \(BC=\sqrt{45}\)(cm)
2/ Ta có: \(AE=EC=\frac{AC}{2}=\frac{6}{2}\)= 3 (cm)
\(\Delta BAD\)và \(\Delta EAD\)có: BA = EA (= 3cm)
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác \(\widehat{A}\))
Cạnh AD chung
=> \(\Delta BAD\)= \(\Delta EAD\)(c. g. c) (đpcm)
3/ \(\Delta ABC\)và \(\Delta AME\)có: \(\widehat{A}\)chung
AB = AE (\(\Delta BAD\)= \(\Delta EAD\))
\(\widehat{ABC}=\widehat{AEM}\)(\(\Delta BAD\)= \(\Delta EAD\))
=> \(\Delta ABC\)= \(\Delta AME\)(g. c. g) => AC = AM (hai cạnh tương ứng)
nên \(\Delta ACM\)cân tại A
và \(\widehat{A}=90^o\)
=> \(\Delta ACM\)vuông cân tại A (đpcm)
4/ Ta có: \(\widehat{AEM}+\widehat{AME}=90^o\)
=> \(\widehat{AEM}< 90^o\)(vì số đo của \(\widehat{AEM}\)và \(\widehat{AME}\)luôn luôn là số dương)
=> \(\widehat{MEC}>90^o\)(tự chứng minh)
=> \(\Delta MEC\)tù => MC là cạnh lớn nhất => ME < MC
áp dụng đ/lý pitago vào tam giác v ABC ta đ̣c BC^2=AB^2+AC^2=3^2+6^2 BC=3căn5 cm câu b xét tam g ABD và tam g AED ta cóAB=AE=3 cm góc BAD=góc EAD(gt) AD chung nên 2 tam g = nhau câu c góc ABC=góc AEM(VÌgócABD=AED mà AED+AME=90 độ) xét tam giác ABC và tg AMEcógócA chung AB=AE gócABC=AEM nên 2 tgiác =nhau suy raAM=AC suy ra tamg AMC v cân
1)Ta có: n2 +12n = n(n + 12 )
Nếu n > 2 thì n( n+ 12) chia hết cho n.Là hợp số
Nếu n= 0 thì n(n+12) = 0 => không phải là hợp số cũng không là số nguyên tố
Nếu n = 1 thì n(n +12) = 13 -> là số nguyên tố
Vậy n=1
b) Nếu n > 0 thì 3n + 6 chia hết cho 3 => là hợp số
Nếu n= 0 thì 3n + 6 = 7 => là số nguyên tố
Vậy n = 0
2) Vì 1050 chia hết cho 5 và 5 chia hết cho 5 nên
1050 - 5 sẽ chia hết cho 5 => là hợp số
1/Ta cần c/m \(10^n-10⋮45\)
Với n = 1 thì \(10^n-10=10-10=0⋮45\) (đúng)
Giả sử điều đó đúng với n = k.Tức là \(10^k-10⋮45\) (đây là giả thiết quy nạp)
Ta sẽ c/m nó đúng với n = k + 1.Ta có:
\(10^{k+1}-10=10^k.10-10=10\left(10^k-10\right)+90\)
Do \(10^k-10⋮45\Rightarrow10\left(10^k-10\right)⋮45;90⋮45\)
Suy ra \(10^{k+1}-10=10^k.10-10=10\left(10^k-10\right)+90⋮45\)
Vậy theo nguyên lí quy nạp,ta có đpcm.
Tham khảo thêm cách khác:Câu hỏi của Trần Tuấn Anh - Toán lớp 6
Cách này thì mình cx không rành lắm.Nhưng ok.