Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
a) +) ta co: tam giác GLO
GL = 6, LO = 8, OG = 10
=> GL < LO < GO ( 6<8<10)
=> góc O < góc G < góc L ( quan hệ giữa góc và cạnh đối diện trong tam giác LOG )
+) ta co: tam giac UVW
góc V = 40, góc U = 50
=> góc W = 180 - ( góc V + goc Ư )
= 180 - ( 50 + 40)
= 90
=> góc V < góc U < góc W
=> UW < VW < VU ( quan hệ giữa cạnh và góc trong tam giác ACB )
Ta có: \(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|\)
Nhận thấy: \(\left[{}\begin{matrix}\left|x-1\right|\ge x-1\\\left|5-x\right|\ge5-x\end{matrix}\right.\)
\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge x-1+5-x\)
\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge4\)
Dấu \("="\) xảy ra khi:
\(\left[{}\begin{matrix}x-1\ge0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le5\end{matrix}\right.\) \(\Rightarrow1\le x\le5\)
Vậy \(1\le x\le5.\)
Cho mk thêm cái ạ:
\(x\in\left\{1;2;3;4;5\right\}\)
Vậy \(x\in\left\{1;2;3;4;5\right\}\)
b: |2x-1|<5
=>2x-1>-5 và 2x-1<5
=>2x>-4 và 2x<6
=>-2<x<3
mà x là số nguyên dương
nên \(x\in\left\{1;2\right\}\)
Giá trị (x) | Tần số (n) | Các tích (x.n) | |
17 | 3 | 51 | |
18 | 5 | 90 | |
19 | 4 | 76 | |
20 | 2 | 40 | |
21 | 3 | 63 | |
22 | 2 | 44 | |
24 | 3 | 72 | |
26 | 3 | 78 | |
28 | 1 | 28 | |
30 | 1 | 30 | |
31 | 2 | 62 | |
32 | 1 | 32 | = \(\dfrac{666}{30}=22,2\) |
N = 30 | Tổng: 666 |
Phép tính | Ước lương kết quả | ĐS đúng |
24.68:12 | 20.70:10 = 140 | 136 |
7,8.3,1:1,6 | 8.3:2=12 | 15,1125 |
6,9.72:24 | 7.70:20 = 24,5 | 20,7 |
56.9,9:8,8 | 60.10:9 = 66,(6) | 63 |
0,38.0,45:0,95 | 0.0:1=0 | 0,18 |
vì AC=AD=>A thuộc đường trung trực của CD
CB=BD=>B thuộc đường trung trực của CD
=>AB thuộc đường trung trực của CD=>AB vuông góc với CD
a, \(M=2x^4y^3-\dfrac{1}{5}xy-xy^3\)
bậc 7
b, Thay x = -2,5 ; y = 0,4 vào ta được
\(2\left(-2,5\right)^4.0,4^3-\dfrac{1}{5}\left(-2,5\right).0,4+2,5.\left(0,4\right)^3=5,36\)