Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2sin\dfrac{a+b}{2}cos\dfrac{a-b}{2}+2sin\dfrac{a+b}{2}cos\dfrac{a+b}{2}\)
\(=2sin\dfrac{a+b}{2}\left(cos\dfrac{a+b}{2}+cos\dfrac{a-b}{2}\right)\)
\(=2sin\dfrac{a+b}{2}.2cos\dfrac{a}{2}cos\dfrac{b}{2}\)
\(=4sin\dfrac{a+b}{2}cos\dfrac{a}{2}cos\dfrac{b}{2}\)
\(0< A;B;C< 180^0\Rightarrow\left\{{}\begin{matrix}sinA>0\\sinB>0\\sinC>0\end{matrix}\right.\)
\(\Rightarrow A=sinA+sinB+sinC>0\)
\(B=sinA.sinB.sinC>0\)
Riêng 2 câu c;d đâu biết \(\alpha\) là góc nào mà xét dấu?
Ta có: A = \(sin\dfrac{A}{2}+sin\dfrac{B}{2}+sin\dfrac{C}{2}=cos\dfrac{B+C}{2}+2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}\)
\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}-cos^2\dfrac{B+C}{4}+sin^2\dfrac{B+C}{4}=0\)\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}+2sin^2\dfrac{B+C}{4}-1=0\)
Δ' = \(cos^2\dfrac{B-C}{4}-2\left(A-1\right)\ge0\)
\(\Rightarrow A-1\le\dfrac{1}{2}\Leftrightarrow A\le\dfrac{3}{2}\)
cho tam giác ABC, chứng minh rằng: \(sinA+sinB-sinC=4.sin\frac{A}{2}.sin\frac{B}{2}.cos\frac{C}{2}\)
\(sinA+sinB-sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}-sinC\)
\(=2cos\frac{C}{2}.cos\frac{A-B}{2}-2sin\frac{C}{2}cos\frac{C}{2}\)
\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}-sin\frac{C}{2}\right)\)
\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}-cos\frac{A+B}{2}\right)\)
\(=4cos\frac{C}{2}sin\frac{A}{2}sin\frac{B}{2}\)
\(=2sin\left(\frac{a+b}{2}\right)cos\left(\frac{a-b}{2}\right)+2sin\left(\frac{a+b}{2}\right)cos\left(\frac{a+b}{2}\right)\)
\(=2sin\left(\frac{a+b}{2}\right)\left[cosa\left(\frac{a-b}{2}\right)+cos\left(\frac{a+b}{2}\right)\right]\)
\(=4sin\left(\frac{a+b}{2}\right)cos\frac{a}{2}.cos\frac{b}{2}\)