Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\sqrt{3+2\sqrt{2}}=\sqrt{\sqrt{2}^2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\left|\sqrt{2}+1\right|=\sqrt{2}+1\)
b, \(\sqrt{3-2\sqrt{2}}=\sqrt{\sqrt{2}^2-2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)
c, \(\sqrt{8-2\sqrt{15}}=\sqrt{\sqrt{5}^2-2\sqrt{5.3}+\sqrt{3}^2}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{3}\right|=\sqrt{5}-\sqrt{3}\)
b)\(\sqrt{17-12\sqrt{2}}\)
=\(\sqrt{9-2.3.2\sqrt{2}+8}\)
=\(\sqrt{\left(3-2\sqrt{2}\right)^2}\)
= \(3-2\sqrt{2}\)
Câu 1. Biến đổi biểu thức trong căn thành một bình phương một tổng hay một hiệu rồi từ đó phá bớt một lớp căn
a/\(\sqrt{41+12\sqrt{5}}\)
Bài 2:
\(\dfrac{2\sqrt{3}-10}{5}\cdot\sqrt{\dfrac{5+\sqrt{3}}{5-\sqrt{3}}}\)
\(=\dfrac{2\sqrt{3}-10}{5}\cdot\sqrt{\dfrac{28+10\sqrt{3}}{22}}\)
\(=\dfrac{2\sqrt{3}-10}{5}\cdot\dfrac{5+\sqrt{3}}{\sqrt{22}}\)
\(=\dfrac{2\left(\sqrt{3}-5\right)\left(\sqrt{3}+5\right)}{5\sqrt{22}}\)
\(=\dfrac{2\cdot\left(3-25\right)}{5\sqrt{22}}=\dfrac{-44}{5\sqrt{22}}=\dfrac{-2\sqrt{22}}{5}\)
\(\sqrt{7+4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
\(\sqrt{8-2\sqrt{12}}=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}=\left|\sqrt{6}-\sqrt{2}\right|=\sqrt{6}-\sqrt{2}\)
\(\sqrt{21+6\sqrt{6}}=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}=\left|3\sqrt{2}-\sqrt{3}\right|=3\sqrt{2}-\sqrt{3}\)
\(\sqrt{15-6\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}=\left|3-\sqrt{6}\right|=3-\sqrt{6}\)
\(\sqrt{29-12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)
\(\sqrt{41+12\sqrt{5}}=\sqrt{\left(6+\sqrt{5}\right)^2}=6+\sqrt{5}\)
Bài 1:
a: Ta có: \(\sqrt{3x^2}=\sqrt{12}\)
\(\Leftrightarrow3x^2=12\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
b: Ta có: \(\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
1, \(\sqrt{8+2\sqrt{15}}=\sqrt{8+2\sqrt{5.3}}=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)
2, \(\sqrt{15-2\sqrt{14}}=\sqrt{14-2\sqrt{14}+1}=\sqrt{\left(\sqrt{14}-1\right)^2}=\sqrt{14}-1\)
3, \(\sqrt{21+8\sqrt{5}}=\sqrt{21+2.4\sqrt{5}}=\sqrt{16+2.4\sqrt{5}+5}\)
\(=\sqrt{\left(4+\sqrt{5}\right)^2}=4+\sqrt{5}\)