Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
\(=2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
\(=2.\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=1-\frac{1}{100}\Rightarrowđpcm\)
Ta có :
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}< 1\)\(\left(đpcm\right)\)
\(E=\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\)
\(E=\frac{2}{20}+\frac{2}{30}+...+\frac{2}{240}\)
\(E=2\left(\frac{1}{20}+\frac{1}{30}+...+\frac{1}{240}\right)\)
\(E=2\left(\frac{1}{4x5}+\frac{1}{5x6}+...+\frac{1}{15x16}\right)\)
\(E=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(E=2\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(E=\frac{3}{8}\)
1/2E=1/20+1/30+1/42+...+1/240. =>1/2E=1/4*5+1/5*6+1/6*7+...+1/15*16. =>1/2E=1/4-1/5+1/5-1/6+1/6-1/7+...+1/15-1/16. =>1/2E=1/4-1/16=3/16. =>E=3/16:1/2=3/8. Câu b có vấn đề.
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{3.5.7}+...+\frac{1}{45.47.49}\)
\(\Rightarrow4A=\frac{4}{1.3.5}+\frac{4}{3.5.7}+...+\frac{4}{45.47.49}\)
\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{45.47}-\frac{1}{47.49}\)
\(=\frac{1}{3}-\frac{1}{47.49}\)
\(\Rightarrow A=\frac{\frac{1}{3}-\frac{1}{47.49}}{4}=\frac{575}{6909}\)
=>A=\(\frac{7}{2}\)(\(\frac{1}{1}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+...+\(\frac{1}{99}\)-\(\frac{1}{101}\))
=>A=\(\frac{7}{2}\)(1-\(\frac{1}{101}\))
=>A=\(\frac{350}{101}\)
7/2 ( \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{99}-\frac{1}{101}\))
7/2 ( 1 - 1/101 )
7/2 x 100/101
=350/101
\(A=\frac{10.11+50.55+70.77}{11.12+55.60+77.84}\)
\(=\frac{10.11+5.10.5.11+7.10.7.11}{11.12+11.5.12.5+11.7.12.7}\)
\(=\frac{10.11\left(1+25+49\right)}{11.12\left(1+25+49\right)}\)
\(=\frac{10.11}{11.12}=\frac{10}{12}=\frac{5}{6}\)
\(B=\frac{1\times3\times5\times7\times........\times49}{26\times27\times28\times...........\times50}\)
\(=\frac{\left(1\times3\times5\times7\times.........\times49\right).\left(2\times4\times6.........48\times50\right)}{\left(26\times27\times28\times.........\times50\right).\left(2\times4\times6\times...........\times48\times50\right)}\)
\(=\frac{1\times2\times3\times4\times..........\times50}{\left(26\times27\times28\times..............\times50\right)2^{25}\left(1\times2\times3\times4\times............\times25\right)}=\frac{1}{2^{25}}\)
\(C=\frac{1.2.6+2.4.12+4.8.24+7.14.42}{1.6.9+2.12.18+4.24.36+7.42.63}\)
\(=\frac{1.2.6\left(1+8+64+343\right)}{1.6.9\left(1+8+64+343\right)}\)
\(=\frac{1.2.6}{1.6.9}=\frac{2}{9}\)
\(A=\frac{5}{6}\)
\(B=\frac{1}{33554432}\)
\(C=\frac{28}{117}\)
Ta có:\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2009.2011}\)
\(2A=2.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2009.2011}\right)=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2009.2011}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2011}\)
\(=1-\frac{1}{2011}=\frac{2010}{2011}\)
=>\(A=\frac{2010}{2011}:2=\frac{2010}{2011}.\frac{1}{2}=\frac{1005}{2011}\)
\(3C=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{27.28.29.30}\)
\(3C=\frac{4-1}{1.2.3.4}+\frac{5-2}{2.3.4.5}+...+\frac{30-27}{27.28.29.30}\)
\(3C=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{27.28.29}+\frac{1}{28.29.30}\)
\(3C=\frac{1}{1.2.3}-\frac{1}{28.29.30}\Rightarrow C=\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right):3\)