Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)4n+6 chia hết cho 2 với mọi n nên ta có đpcm
b)Cả 2 thừa số dều lẻ với mọi n nên ta có đpcm
a) Ta có: 4n+6 có chữ số tận cùng là số chẵn
=> (4n+6).(5n+7) cũng có chữ số tận cùng là số chẵn
Mà các số có chữ số chẵn tận cùng đều chia hết cho 2
Vậy (5n+7).(4n+6) chia hết cho 2
b) Ta thấy: 8n+1 có chữ số tận cùng là một số lẻ
6n+5 có chữ số tận cùng cũng là một số lẻ
=> (8n+1).(6n+5) có chữ số tận cùng là một số lẻ
=> (8n+1).(6n+5) không chia hết cho 2
THÔI TỰ ĐI MÀ LÀM NHÌN THẤY LÀ ĐÃ GIẬT MÌNH RỒI DÀI DẰNG DẶC AI MÀ LÀM HẾT ĐƯỢC CÁC BẠN NHỈ !
1 /
B = 15 + 17 - 16
B = 16
mà 16 không chia hết cho 12 , nên không cần chứng minh cũng ra
2 /
a ) N = 1 đó
b ) N = 1 đó
cách dễ nhất là cứ cho N = 1 , vì bao nhiêu lần 1 thực hiện phép tính chia thì chắng chia hết cho 1
còn lại tương tự nhé !
mình còn làm violympic nữa
nếu ý bạn là : 5*n = 5xn hoặc 5n thì giải như sau :
a) ta có 5n + 12 = 5n + 10 + 2 = 5(n + 2 ) + 2 vì đã có 5 ( n+ 2 ) chia hết cho n + 2 nên chỉ cần 2 chia hết cho n+2 là được .
vậy chỉ có thể chọn n = 0
b) cũng như cách phân tích như ở phần a ta có : 5n + 7 = 5n + 5 + 2 = 5 ( n + 1 ) + 2 (1)
tương tự ta có : 2n + 3 = 2n + 2 + 1 = 2( n + 1 ) + 1 (2)
xét (1 ) ta có 5 (n +1 ) +2 = 5 ( n + 1 ) + (1 + 1) => nếu n = 1 thì (1) có Ư là : 2 và 1
xét (2) ta có 2 ( n + 1 ) + 1 = 2( n + 1 ) + ( 0 + 1 )=>nếu n = 0 thi (2) cóƯ là : 1
vậy (1) và (2) chỉ có 1 Ư chung là 1 nên chúng là 2 số NT cùng nhau
c) 5n + 12 = 5n + 10 + 2 = 5 ( n + 2 ) + 2 ( đpcm )
a)(5n+7)(4n+6)
nếu n=2k =>(5.2k+7)(4.2k+6)=(10k+7)(8k+6)
Vì 8k+6 chia hết cho 2 nên (10k+7)(8k+6) chia hết cho 2 (1)
nếu n=2k+1 =>[5.(2k+1)+7].[4.(2k+1)+6]=(10k+5+7).(8k+4+6)=(10k+12).(8k+10) chia hết cho 2 (2)
Từ (1) (2) =>(5n+7).(4n+6) luôn chia hết cho 2
=>đpcm
a) ta có: (n+6)(n+7) là tích của 2 số tự nhiên liên tiếp => trong đó nhất định có một số chia hết cho 2 => tích sẽ luôn luôn chia hết cho 2
b) với n=2k ( n chẵn) => n^2+n+3= 4k^2+2k+3
4k^2 chia hết cho 2k chia hết cho 2 nhưng +3 => k chia hết cho 2
với n=2k+1 ( n lẻ) => n^2+n+3=\(\left(2k+1\right)^2+2k+1+3=4k^2+6k+5\) giải thích như trên
=> k chia hết cho 2 với mọi n
Bài 1:
a)2n+5chia hết cho n+1<=>2(n+1)+3 chia hết cho n+1=>3 chia hết cho n+1 mà n thuộc N
=>n+1 thuộc {1;3}
=>n thuộc{0;2}
b)4n-7chia hết cho n-1<=>4(n-1)-3chia hết cho n-1=>3chia hết cho n-1 mà n thuộc N
=>n-1 thuộc{-1;1;3}
=>n thuộc {1;2;4}
c)10-2n chia hết cho n-2<=>14-2(n-2) chia hết cho n-2 =>14 chia hết cho n-2 mà n thuộc N
=>n-2 thuộc {-2;-1;1;2;7;14}
=>n thuộc {0;1;3;4;9;16}
d)5n-8 chia hết cho 4-n <=>5(4-n)-28 chia hết cho n-4=>28chia hết cho n-4 mà n thuộc N
=>n-4 thuộc {-4;-2;-1;1;2;4;7;14;28}
=>n thuộc{0;2;3;5;6;8;11;18;32}
e)n2+3n+6 chia hết cho n-3<=>-n(n-3)+6 chia hết cho n-3=>6 chia hết cho n-3 mà n thuộc N
=>n-3 thuộc{-3;-2;-1;1;2;3;6}
=>n thuộc{0;1;2;4;5;6;9}
Bài 2:
a)A=2+22+23+...+2100 chia hết cho 2
A=2+22+23+24+...+299+2100
A=2(1+2)+23(1+2)+...+299(1+2) chia hết cho 1+2<=>A chia hết cho 3
A=2+22+23+24+25+26+27+28+...+297+298+299+2100
A=2(1+2+22+23)+24(1+2+22+23)+...+297(1+2+22+23)=>A chia hết cho 1+2+22+23 <=>Achia hết cho 15
b)A chia hết cho 2 => A là hợp số
c)A=2+22+23+24+25+26+27+28+...+297+298+299+2100
A=(2+22+23+24)+(25+26+27+28)+...+(297+298+299+2100)
A=(24n1-3+24n1-3+24n1-1+24n1)+(24n2-3+24n2-3+24n2-1+24n2)+...+(24n25-3+24n25-3+24n25-1+24n25)
A=(...2+...4+...8+...6)+(...2+...4+...8+...6)+...+(...2+...4+...8+...6)
A=...0+...0+...+...0
A=0
Bài 3:
a)gọi UCLN của 2n+1 và 3n+1 là d
2n+1 chia hết cho d => 6n+3 chia hết cho d
3n+1 chia hết cho d =>6n+2 chia hết cho d
=>6n+3-(6n+2) chia hết cho d
1 chia hết cho d
=>d =1=>UCLN cua 2n+1 va 3n+1 chia hết cho d
b)Gọi UCLN cua 9n+13và 3n+4 là m
9n+13 chia hết cho m
3n+4 chia hết cho m=>9n+12 chia hết cho m
=>9n+13-(9n+12) chia hết cho m
1 chia hết cho m
=> m=1
=> UCLN cua 9n+13 va 3n+4 là1
c) gọi UCLN cua 2n+1 và 2n+3 là n
2n+3 chia hết cho n
2n+1 chia hết cho n
2n+3-(2n+1) chia hết cho n
2chia hết cho n
n thuộc {1,2}
=> UCLN của 2n+1 và 2n+3 là 1 hoặc 2
dài thấy mợ luôn để t lm đc bài nào thì t lm
a)2n+5chia hết cho n+1<=>2(n+1)+3 chia hết cho n+1=>3 chia hết cho n+1 mà n thuộc N
=>n+1 thuộc {1;3}
=>n thuộc{0;2}
b)4n-7chia hết cho n-1<=>4(n-1)-3chia hết cho n-1=>3chia hết cho n-1 mà n thuộc N
=>n-1 thuộc{-1;1;3}
=>n thuộc {1;2;4}
c)10-2n chia hết cho n-2<=>14-2(n-2) chia hết cho n-2 =>14 chia hết cho n-2 mà n thuộc N
=>n-2 thuộc {-2;-1;1;2;7;14}
=>n thuộc {0;1;3;4;9;16}
d)5n-8 chia hết cho 4-n <=>5(4-n)-28 chia hết cho n-4=>28chia hết cho n-4 mà n thuộc N
=>n-4 thuộc {-4;-2;-1;1;2;4;7;14;28}
=>n thuộc{0;2;3;5;6;8;11;18;32}
e)n^2+3n+6 chia hết cho n-3<=>-n(n-3)+6 chia hết cho n-3=>6 chia hết cho n-3 mà n thuộc N
=>n-3 thuộc{-3;-2;-1;1;2;3;6}
=>n thuộc{0;1;2;4;5;6;9}
Bài 2:
a)A=2+2^2+2^3+...+2^100 chia hết cho 2
A=2+2^2+2^3+2^4+...+2^99+2^100
A=2(1+2)+2^3 (1+2)+...+2^99 (1+2) chia hết cho 1+2<=>A chia hết cho 3
A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+...+2^97+2^98+2^99+2^100
A=2(1+2+2^2+2^3 )+2^4 (1+2+2^2+2^3 )+...+2^97 (1+2+2^2+2^3 )=>A chia hết cho 1+2+2^2+2^3 <=>Achia hết cho 15
b)A chia hết cho 2 => A là hợp số.
c)A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+...+2^97+2^98+2^99+2^100
A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^97+2^98+2^99+2^100 )
A=(24n1 -3+24n1 -3+24n1 -1+24n1)+(24n2 -3+24n2 -3+24n2 -1+24n2)+...+(24n25 -3+24n25 -3+24n25 -1+24n25)
A=(...2+...4+...8+...6)+(...2+...4+...8+...6)+...+(...2+...4+...8+...6)
A=...0+...0+...+...0.
A=....0
a,Nếu n chẵn thì n+n chẵn->(n+6).(n+7) là chẵn chia hết cho 2
Nếu n lẻ thì n+n chẵn ->(n+6).(n+7) là chẵn chia hết cho 2
->Mọi giá trị của n thuộc (n+6).(n+7) đều chia hết cho 2
b,B=n^2+n+3
=n(n+1)+3
Nếu n chẵn thì B ko chia hết cho 2
Nếu n lẻ thì B ko chia hết cho 2
->Mọi giá trị n thuộc B đều ko chia hết cho 2
c,Nếu n chẵn thì n^2+5n+7 là lẻ nên ko thuộc bội của 2
Nếu n lẻ thì n^2+5n+7 là lẻ nên ko thuộc bội của 2
->Mọi giá trị của n thuộc n^2+5n+7 dều ko là bội của 2