K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

Đặt a=12.a

      b=12.b

  UCLN(a,b)=1

 Ta có : a.b=2016

   12.a.12.b=2016

 (12.12).a.b=2016

      144.a.b=2016

            a.b=2016:144

            a.b=14

Vì a.b=14 và UCLN(a,b)=1 nên

(a=1;b=14);(a=14;b=1);(a=2;b=7);(a=7;b=2)

suy ra (a=12;b=168);(a=168;b=12);(a=24;b=84);(a=84;b=24)

16 tháng 8 2016

a) Ta có: $(3n+2,5n+3)=(3n+2,2n+1)=(n+1,2n+1)=(n+1,n)=1$.

Các câu sau chứng minh tương tự.

 

11 tháng 12 2021

giải bài này giúp mình với

18 tháng 12 2021

Em tham khảo:

Gọi d là ƯCLN (2a + 1; 6a + 4) Nên ta có :

2a + 1 ⋮ d và 6n + 4 ⋮ d

=> 3 ( 2a + 1 ) ⋮ d và 6n + 4 ⋮ d

=> 6a + 3 ⋮ d và 6a + 4 ⋮ d

=> (6a + 4) - (6a + 3) ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN (2a + 1; 6a + 4) = 1 => 2a + 1 và 6a + 4 là nguyên tố cùng nhau ( đpcm )

18 tháng 12 2021

Gọi d là ƯC(2a+1;6a+4)             (d thuộc N*)

=> 2a+1 chia hết cho d;6a+4 chia hết cho d

=>3(2a+1) chia hết cho d hay 6a+3 chia hết cho d

=>(6a+4)-(6a+3) chia hết cho d

     6a+4-6a-3     chia hết cho d

     (6a-6a)+(4-3) chia hết cho d

                  1     chia hết cho d

=> d=1

=> 2a+1 và 6a+4 là 2 số nguyên tố cùng nhau ( a thuộc N*) 

      Vậy 2a+1 và 6a+4 là 2 số nguyên tố cùng nhau ( a thuộc N*)

đề bài là chứng minh với a thuộc Z các cặp số sau là các số nguyên tố cùng nhau nha 

29 tháng 11 2019

Gọi ƯCLN(8n+10,6n+7) là d  (d\(\in\)N*)

\(\Rightarrow\)8n+10\(⋮\)d và 6n+7\(⋮\)d

\(\Rightarrow\)(8n+10)-(6n+7)\(⋮\)d

\(\Rightarrow\)6(8n+10)-8(6n+7)\(⋮\)d

\(\Rightarrow\)48n+60-48n+56\(⋮\)d

\(\Rightarrow\)4\(⋮\)d

\(\Rightarrow\)d\(\in\)Ư(4)={1;2;4}

Mà 6n+7 là số lẻ

\(\Rightarrow\)d=1

\(\Rightarrow\)8n+10 và 6n+7 là hai số nguyên tố cùng nhau

Vậy 8n+10 và 6n+7 là hai số nguyên tố cùng nhau.

29 tháng 11 2019

Áp dụng: UCLN ( a; b ) = UCLN ( a; b - a)   với a < b

Có:

UCLN ( 8n + 10 ; 6n + 7 ) = UCLN ( 6n + 7 ; 2n + 3) = UCLN ( 2n + 3; 4n + 4 ) = UCLN ( 2n + 3; n + 1)

= UCLN ( n + 1; n + 2 ) = UCLN ( n + 1; 1 ) = 1

=> 8n + 10 và 6n + 7 là hai số nguyên tố cùng nhau.

13 tháng 12 2015

Gọi d là ƯC(2a+1;6a+4)             (d thuộc N*)

=> 2a+1 chia hết cho d;6a+4 chia hết cho d

=>3(2a+1) chia hết cho d hay 6a+3 chia hết cho d

=>(6a+4)-(6a+3) chia hết cho d

     6a+4-6a-3     chia hết cho d

     (6a-6a)+(4-3) chia hết cho d

                  1     chia hết cho d

=> d=1

=> 2a+1 và 6a+4 là 2 số nguyên tố cùng nhau ( a thuộc N*) 

      Vậy 2a+1 và 6a+4 là 2 số nguyên tố cùng nhau ( a thuộc N*) 

29 tháng 10 2015

a) Giả sử ƯCLN(a;2a-1)=d. Khi đó a và 2a-1 cùng chia hết cho d, suy ra 2a-(2a-1)=1 chia hết cho d hay d=1 và ƯCLN(a;2a-1)=1 nên (a;2a-1) là nguyên tố cùng nhau với bất ký a thuộc N (đpcm)

b) Giả sử ƯCLN(a;6a-1)=d. Khi đó a và 6a-1 cùng chia hết cho d, suy ra 6a-(6a-1)=1chia hết cho d hay d=1 và ƯCLN(a;6a-1)=1 nên (a;6a-1) là nguyên tố cùng nhau với bất ký a thuộc N (đpcm)