K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

Gọi d là ƯCLN ( 2n - 1 ; 2n - 2 )

=> 2n - 1 ⋮ d

=> 2n - 2 ⋮ d

=> [ ( 2n - 2 ) - ( 2n - 1 ) ] ⋮ d

=> 2 - 1 ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN ( 2n - 1 ; 2n - 2 ) = 1 nên 2n-1/2n-2 là phân số tối giản

Ccs câu sau làm tương tự

2 tháng 1 2017

Gọi UCLN(n+1,2n+3) = d

=> n + 1 chia hết cho d => 2(n + 1) chia hết cho d => 2n + 2 chia hết cho d

     2n + 3 chia hết cho d

=> 2n + 3 - (2n +  2) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> UCLN(n+1,2n+3) = 1

Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản

Gọi UCLN(2n+1,2n+3) = d

=> 2n+1 chia hết cho d

     2n+3 chia hết cho d

=> 2n+3 - (2n+1) chia hết cho d

=> 2 chia hết cho d

=> d \(\in\){1;2}

Vì 2n+1 lẻ nên d = 1

=>UCLN(2n+1,2n+3) = 1

Vậy \(\frac{2n+1}{2n+3}\) là phân số tối giản

22 tháng 1 2017

ai đúng cho tích

11 tháng 7 2017

Gọi d là ƯCLN của n + 1 và 2n + 3

Khi đó : n + 1 chia hết cho d , 2n + 3 chia hết cho d

<=>  2(n + 1) chia hết cho d , 2n + 3 chia hết cho d

<=>  2n + 2 chia hết cho d , 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 1 chia hết cho d

Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản

11 tháng 7 2017

a,Gọi d là ƯCLN của n+1 và 2n+3(d thuộc Z/ d khác 0)

=> n+1 chia hết cho d; 2n+ 3 chia hết cho d

=>(n+1)-(2n+3) chia hết cho d

=>1chia hết cho d=> d thuộc Ư của 1

=.> \(\frac{n+1}{2n+3}\)là ps tối giản

b, Gọi d là ƯCLN (2n+3;4n+8)(d thuộc Z/ d khác 0)

=>2n+3 chia hết cho d;4n+8 chia hết cho d

=>(2n+3)-(4n+8) chia hết cho d

=>(2n+3)-(2n+4) chia hết cho d

=>-1 chia hết cho d

=>\(\frac{2n+3}{4n+8}\)là ps tối giản

29 tháng 4 2017

Gọi d là ƯCLL(2n+3,4n+8).

2n+3 \(⋮\)d \(\Rightarrow\)4n+9 \(⋮\)d

4n+8 \(⋮\)d

\(\Rightarrow\)(4n+9)-(4n+8) \(⋮\)d

\(\Rightarrow\)1 \(⋮\)d

Vì ƯCLL(2n+3,4n+8)= 1 nên 2n+3/4n+8 là phân số tối giản

tk mình nha

29 tháng 4 2017

Goi d la UCLN(2n+3 , 4n+8)

\(\Rightarrow2n+3⋮d\)

\(4n+8⋮d\)

\(\Rightarrow2\left(2n+3\right)⋮d\)

\(4n+8⋮d\)

\(\Rightarrow4n+6⋮d\)

\(4n+8⋮d\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in U\left(1,2\right)\)

Ma \(2n+3\) la so le

\(\Rightarrow d=1\)

\(\Rightarrow\frac{2n+3}{4n+8}la\) p/s toi gian voi moi n \(\in\)N

11 tháng 4 2016

để p/số trên tối giản thì ƯCLN  là 1,gọi số đó là d

n+1:d,2n+2:d

2n+3-2n-2:d

1:d

d=1

vậy p/số đó luôn tối giản

11 tháng 4 2016

gọi ƯC(n+1;2n+3)=d

ta có n+1 chia hết cho d nên 2(n+1) chia hết cho d nên 2n+2 cũng chia hết cho d , mặt khác 2n+3 chia hết cho d

nên 2n+3-(2n+2) chia hết cho d nên 1 chia hết cho d vậy ƯC của n+1 và 2n+3 là 1 hoặc -1

do đó mọi fân số dạng n+1/2n+3 đều là phân số tối giản

10 tháng 2 2016

Gọi ước chung của 4n+1 và 6n+1 là số tự nhiên x.Ta có :

4n+1 và 6n+1 thuộc B(x) => 6(4n+1); 4(6n+1) hay 24n+6;24n+4 thuộc B(x)

=> (24n+6) - (24n+4) = 2 thuộc B(x) => x = 1;2 mà 4n;6n chẵn nên 4n+1;6n+1 lẻ (không thuộc B(2) )

=> x khác 2 và bằng 1 => 4n+1;6n+1 là 2 số nguyên tố cùng nhau

=> 4n+1 / 6n+1 là phân số tối giản (n thuộc N) 

13 tháng 4 2018

a) Ta có : \(\frac{n+1}{2n+3}\)tối giản <=> ƯCLN(n+1;2n+3) \(\in\){1; -1}

Gọi d là ƯCLN(n+1; 2n+3)

=> n + 1 \(⋮\)d        =>  2(n + 1) \(⋮\) d => 2n + 2  \(⋮\) d

     2n + 3 \(⋮\) d  

=> (2n + 3) - (2n + 2) = 1 \(⋮\)  d => d \(\in\){1; -1}

Vậy  \(\frac{n+1}{2n+3}\)tối giản

13 tháng 4 2018

gọi UCLN(n+1,2n+3)=đ (d thuộc N*)

Ta có:{n+1 chia hết cho d=>2n+2 chia hết cho d

          { 2n+3 chia hết cho d

Xét[(2n+3)-(2n+2)] chia hết cho  d

=>1 chia hết cho d

=> d=1

=>UCLN(n+1,2n+3)=1

Vậy n+1/2n+3 là phân số tối giảm với mọi n

b,

gọi UCLN(2n+3,4n+8)=đ (d thuộc N*)

Ta có:{n+1 chia hết cho d=>2n+2 chia hết cho d

          { 2n+3 chia hết cho d

Xét[(2n+3)-(2n+2)] chia hết cho  d

=>1 chia hết cho d

=> d=1

=>UCLN(n+1,2n+3)=1

Vậy n+1/2n+3 là phân số tối giảm với mọi n