\(\frac{1}{11}\)+ \(\frac{1}{12}\) +...+ <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2018

Bạn ơi đề thiếu mất yêu cầu rùi kìa !

Bạn viết lại cho đầy đủ yêu cầu đi nha 

Khi nào viết rùi thì nói cho mk biết mk làm cho 

10 tháng 3 2018

Thíu đề rồi !!

20 tháng 2 2020

Đặt \(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\)

Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)

            \(\frac{1}{4^2}< \frac{1}{3.4}\)

            \(\frac{1}{5^2}< \frac{1}{4.5}\)

             ...

            \(\frac{1}{2014^2}< \frac{1}{2013.2014}\)

\(\Rightarrow B< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2013.2014}\)

\(\Rightarrow B< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2014}\)

\(\Rightarrow B< \frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)  

\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)

Vậy A<\(\frac{3}{4}\)

20 tháng 2 2020

A<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)=\(\frac{2013}{2014}\)<\(\frac{3}{4}\)

18 tháng 3 2018

Bài 1:\(A=1-\frac{1}{2}+1-\frac{1}{6}+.......+1-\frac{1}{9900}\)

\(=1-\frac{1}{1.2}+1-\frac{1}{2.3}+........+1-\frac{1}{99.100}\)

\(=99-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\right)=99-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)\)

\(=99-\left(1-\frac{1}{100}\right)=99-\frac{99}{100}=\frac{9801}{100}\)

Bài 2:\(A=\frac{1}{299}.\left(\frac{299}{1.300}+\frac{299}{2.301}+.........+\frac{299}{101.400}\right)\)

\(=\frac{1}{299}.\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+.........+\frac{1}{101}-\frac{1}{400}\right)\)

\(=\frac{1}{299}.\left(1+\frac{1}{2}+......+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-.......-\frac{1}{400}\right)\)

\(=\frac{1}{299}.\left[\left(1+\frac{1}{2}+.......+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+......+\frac{1}{400}\right)\right]\)(đpcm)

18 tháng 3 2018

1/

\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{9900}\right)\)

\(=\left(1+1+...+1\right)\left(50so\right)-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\right)\)

\(=50-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)

\(=50-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=50-\left(1-\frac{1}{100}\right)=49+\frac{1}{100}=\frac{4901}{100}\)

2/ 

\(=\frac{1}{299}\left(\frac{299}{1.300}+\frac{299}{2.301}+...+\frac{299}{101.400}\right)\)

\(=\frac{1}{299}\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...+\frac{1}{101}-\frac{1}{400}\right)\)

\(=\frac{1}{299}\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]\)

2 tháng 4 2019

Mình còn chưa học lớp 6 huhu

2 tháng 4 2019

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}< 1\)

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{49}-\frac{1}{50}< 1\)

\(S=1-\frac{1}{50}< 1\)

\(S=\frac{49}{50}< 1\left(đpcm\right)\)

Ta có: A=1/11+1/12+1/13+...+1/30

            =(1/11+1/12+1/13+..+1/20)+(1/21+1/22+1/23+...+1/30)

\(\Rightarrow\)A<(1/10+1/10+1/10+...+1/10)+(1/20+1/20+1/20+...1/20)

\(\Rightarrow\)A<(1/10)*10+(1/20)*10

\(\Rightarrow\)A<1+1/2

\(\Rightarrow\)A<3/2<11/6

2 tháng 4 2018

cam on ban rat nhieu

2 tháng 9 2020

\(B=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}\)

\(=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)=\frac{1}{2}\cdot\frac{10}{39}=\frac{5}{39}\)

2 tháng 9 2020

\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{1.13}\)

\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)=\frac{1}{2}.\frac{10}{39}=\frac{5}{39}\)

30 tháng 5 2018

em mới học lớp 5 à