K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2017

\(\dfrac{1}{25}\)S=1/54-1/56+1/58-1/510+...+1/52012-1/52014

\(\Rightarrow\)26/25.S=1/52+1/52014=1/26+...>1/26

9 tháng 3 2017

đề có lộn không em, chị không biết giải như vậy có đúng đề không

18 tháng 5 2022

\(A=\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{10^2}\)

Vì \(\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...\dfrac{1}{10^2}< \dfrac{1}{9.10}\)

\(A< \dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)

Do đó \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Rightarrow A< \dfrac{1}{2}-\dfrac{1}{10}\Rightarrow A< \dfrac{1}{2}\)

Vậy \(A=\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{10^2}< \dfrac{1}{2}\)

`A = 1/3^2 + 1/4^2 + ... + 1/10^2`

Ta có:

`1/3^2 < 1/(2.3)`

`1/(4^2) < 1/(3.4)`

`...`

`1/(10^2) < 1/(9.10)`

`=> A < 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/9 - 1/10 = 1/2 - 1/10 < 1/2`.

10 tháng 8 2016

Ta có

\(A=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)+\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)+\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)+\left(\frac{1}{15}+\frac{1}{16}\right)\)

Vì \(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}< \frac{1}{6}.3=\frac{1}{2}\)

    \(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}< \frac{1}{9}.3=\frac{1}{3}\)

   \(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}< \frac{1}{12}.3=\frac{1}{4}\)

   \(\frac{1}{15}+\frac{1}{16}< \frac{1}{10}.2=\frac{1}{5}\)

=> \(S< 2\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)< 2\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)=3\)

=> S<3 (1) 

Lập luận tương tự ta có

\(S>2\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)>2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)=2\)

=> S>2 (2)

Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.

18 tháng 8 2017

1/3^2 + 1/4^2 + 1/5^2 + ... + 1/100^2 < 1/2nhân3 + 1/3nhân4 + 1/4nhân5 + ... + 1/99nhân100

= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/99 - 1/100 

= 1/2 - 1/100 < 1/2 

=> ĐPCM

2 tháng 2 2016

minh moi hoc lop 6

23 tháng 6 2019

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right).\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\right)\)\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

\(A=\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{35}\right)+\left(\frac{1}{36}+...+\frac{1}{50}\right)>\frac{1}{35}.10+\frac{1}{50}.15=\frac{41}{70}>\frac{7}{12}\)

\(A< \frac{10}{26}+\frac{15}{36}< \frac{5}{6}\) Vậy ....