Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta co:
2n + 111....1 ( n CS 1 )
= ( 3n - n ) + 111....1 ( n CS 1 )
= 3n + ( 111....1 - n ) ( n CS 1 )
Tổng các chữ so cua so 111... 1 ( n CS 1 ) la :
1 + 1 + 1 + .........+ 1 = n ( n so 1 )
suy ra, Số 111...1 và n có cùng số dư khi chia cho 3 ( n CS 1 )
suy ra : ( 111...1 - n ) ⋮3 ( n CS 1 )
Ma (3n) ⋮ 3 với mọi n ∈N
suy ra: [ 3n + ( 111...1 - n ) ] ⋮ 3 ( n CS 1 )
Vay voi moi số tự nhiên n # 0 thì ta co:
2n + 111...1 chia hết cho 3 ( n CS 1 )
3) Gọi 3 chữ số là a;b;c
=> 123abc chia hết cho 1001
123abc = 123.1000 + abc = 123.1001 - 123 + abc = 123.1001 + (abc - 123) chia hết cho 1001
=> abc - 123 chia hết cho 1001 => abc -123 = 1001.k => abc = 1001.k + 123
Chọn k =0 => abc = 123
Chọn k = 1 => abc = 1124 Loại . Từ k > 1 đều không có số nào thỏa mãn
Vậy Viết thêm 3 chữ số là 1;2;3
Chứng tỏ rằng hiệu của 1 số và tổng các chữ số của nó chia hết cho 9? Từ đó, chứng tỏ C= 8n + 111..1 ( n chữ số 1; n thuộc N* ) chia hết cho 9?
b, 10n-1-9+27n
=99...9 - 9n+27n
=9.(11...1 - n) +27 chia hết cho 27
bài 1 ; 11 ;22;33;44
bài 2 :=n.n.(2+7)
=n.n.9
=n.n.3.3chia hết cho 3