Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}< 1\)
\(\Rightarrow A< 1\)
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{10^2}< \frac{1}{9.10}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow A< 1-\frac{1}{10}\)
\(\Rightarrow A< 1\left(đpcm\right)\)
Vậy \(A< 1\)
Bài này nhiều người đăng lắm,bạn vào câu hỏi tương tự
Đặt B=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)
Đặt A =\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\)
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{3\cdot2}\)
...
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(A=1-\frac{1}{10}< 1\)
\(\Rightarrow B< A< 1\left(đpcm\right)\)
Đặt A=đã cho.
Ta thấy:
1/2^2<1/1*2(vì 2^2>1*2).
1/3^2<1/2*3(vì 3^2>2*3).
...
1/10^2<1/9*10(vì 10^2>9*10).
=>A<1/1*2+1/2*3+1/3*4+...+1/9*10.
=>A<1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10.
=>A<1-1/10.
=>A<9/10.
Mà 9/10<1.
=>A<1.
Vậy A<1(đpcm).
\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< 1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(A< 1\)
Chúc bạn học tốt ~
a)đặt B=1/2.3+1/3.4+...+1/99.100
=1/1.2+1/2.3+1/3.4+...+1/99.100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100<1 (1)
Mà 1<2(2)
A =1/1+1/2.2+1/3.3+...+1/100.100<1-1/2+1/2-1/3+...+1/99-1/100 (3)
từ (1),(2),(3) =>A<2
b,c tự làm
Ta có: B = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}\)
B = \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{8.8}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}\)
B < \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)
B < \(1-\frac{1}{8}\) < 1
Vậy B < 1
Gọi \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow A=1-\frac{1}{8}=\frac{7}{8}\)
Mà \(A=\frac{7}{8}< 1\left(1\right)\)
\(\frac{1}{1.2}>\frac{1}{2^2}\)
\(\frac{1}{2.3}>\frac{1}{3^2}\)
\(...\)
\(\Rightarrow A>B\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)
\(\Rightarrow B< 1\left(đpcm\right)\)
Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
....
\(\frac{1}{10^2}\)< \(\frac{1}{9.10}\)
=> \(\frac{1}{2^2}+....+\frac{1}{10^2}\)< \(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{9.10}\)
=> \(\frac{1}{2^2}+....+\frac{1}{10^2}\)< \(\frac{9}{10}\)< 1
=> \(\frac{1}{2^2}+....+\frac{1}{10^2}\)< 1 ( dpcm )
\(\frac{1}{4}\)+\(\frac{1}{9}\)+