Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10/27 < 10/15, 9/16 < 9/15, 11/34 < 11/15
=>10/27 + 9/16 + 11/34 < 10/15 + 9/15 + 11/15
=>A < 30/15
=>A < 2 (đpcm)
Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};\frac{1}{4^2}< \frac{1}{3\cdot4};...;\frac{1}{11^2}< \frac{1}{10\cdot11}\)
\(=>\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{10\cdot11}\)
\(=>\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(=>\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}< 1-\frac{1}{11}=\frac{10}{11}\)(đpcm)
Nếu bạn chưa hiểu thì bạn hỏi lại mình nhé! Chúc bạn học tốt!
Ta có:
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
Mà \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{11^2}< \frac{9}{22}< \frac{10}{11}\) nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}< \frac{10}{11}\)