K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2016

Dễ thế này mà cũng phải hỏi hả em?

Chị chỉ cần ngoáy phát là xong cả đống.

16 tháng 12 2016

M= ( 1+20101)+(20102+20103)+(20104+20105)+(20106+20107)

M= 1.(2010+1) + 20122.(2010+1)+20104.(2010+1)+20106.(2010+1)

M= 2011.(1+20122+20104+20106)

Vậy M chia hết cho 2011

3 tháng 10 2015

Nguyễn Đình Dũng nói xàm

3 tháng 10 2015

http://olm.vn/hoi-dap/question/220891.html

3 tháng 10 2015

\(T=2010\left(1+2010\right)+2010^3\left(1+2010\right)+....+2010^{2009}\left(1+2010\right)\)

\(=2010.2011+...+2010^{2009}.2011\) chia hết cho 2011

=>đpcm

3 tháng 10 2015

Nguyễn Tuấn Tài lớp 7 mà ngu nhỉ

20 tháng 3 2015

A=2010^1+2010^2+2010^3+..........................................+2010^2010

vay suy ra co tat ca 2010 s hang vay ghep cap 

A=2010(1+2010)+2010^3(1+2010)+..........................+2010^9(1+2010)

A=2010.2011+2010^3.2011+............................+2010^9.2011

A=2011(2010+........2010^9) chia het 2011

suy ra A chia het cho 2011

25 tháng 5 2015

Ta có:

A= 2+22+23+...+22010+22011+22012

A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)+(2^2011+2^2012)

A=(2+2^2)+2^2(2+2^2)+...+2^2008(2+2^2)+2^2010(2+2^2)

A=6+2^2x6 + .....+2^2008x6 + 2^2010x6

A=6x(1+2^2+...+2^2008+2^2010) chia hết cho 6 

Vậy A chia hết cho 6

25 tháng 5 2015

Bạn vào mục câu hỏi tương tự ấy!

22 tháng 11 2014

Ta có:

A= 2+22+23+...+22010+22011+22012

A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)+(2^2011+2^2012)

A=(2+2^2)+2^2(2+2^2)+...+2^2008(2+2^2)+2^2010(2+2^2)

A=6+2^2x6 + .....+2^2008x6 + 2^2010x6

A=6x(1+2^2+...+2^2008+2^2010) chia hết cho 6 

Vậy A chia hết cho 6

2 tháng 5 2015

dễ ợt

s=2010(1+20100+2010^3(1+2010)+............+2010^2009(1+2010)

s=2010.2011+2010^3.2011+.........+2010^2009.2011

s=2011(2010+2010^3+.......+2010^2009) chia hết cho 2011

2 tháng 5 2015

 \(S=\left(2010+2010^2\right)+\left(2010^3+2010^4\right)+...+\left(2010^{2009}+2010^{2010}\right)\)

\(S=2010\left(2010+1\right)+2010^3\left(2010+1\right)+...+2010^{2009}\left(2010+1\right)\)

 \(S=2011.\left(2010+2010^3+2010^5+...+2010^{2009}\right)\) chia hết cho 2011