K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2016

TH1 : n lẻ

=>n+7 chẵn

=> (n+4).(n+7) chẵn

TH2: n chẵn

=>n+4 chẵn

=> (n+4).(n+7) chẵn

Vậy.........................

6 tháng 11 2016

Đặt n là số lẻ suy ra n=2k+1

suy ra (n+4)(n+7) = (2k+1+4)(2k+1+7) = (2k+5)(2k+8) = 4k^2 +16k + 10k + 40 = 4k^2 + 26k + 40 = 2(2k^2+13k+20)

vậy suy ra trong trường hợp này (n+4)(n+7) chia hết cho 2

xét n là số chẵn nên n=2k

ta có

(n+4)(n+7) = (2k+4) +(2k+7) = 4k^2+ 14k + 8k + 28 = 4k^2 + 22k + 28 = 2(2k^2+11k+14)

vậy suy ra trong trường hop85 này (n+4)(n+7) chia hết cho 2

vậy (n+4)(n+7) luôn là số chẵn với mọi số tự nhiên n

  
7 tháng 7 2023

Với n là số tự nhiên chẵn thì (n+4) là một số chẵn

Suy ra tích (n+4)(n+7) là một số chẵn.

Với n là số tự nhiên lẻ thì (n+7) là một số chẵn nên tích (n+4)(n+7) là một số chẵn.

Vậy (n+4)(n+7) luôn là một số chẵn với mọi số tự nhiên n.

 

21 tháng 12 2018

n=2

bn nhớ tích dùng cho mk nhé 

thanks you 

1 tháng 11 2015

Tham khảo câu hỏi tương tự nhé bạn

Tick tớ nhé Huỳnh Ngọc Mỹ

1 tháng 11 2015

*Xét n lẻ=>n+7 chẵn

=>(n+4).(n+7) là số chẵn

*Xét n chẵn=>n+4 chẵn

=>(n+4).(n+7) là số chẵn

Vậy (n+4).(n+7) là số chẵn

27 tháng 7 2020

Với n lẻ 

=> n + 7 chẵn

=> ( n + 4 )( n + 7 ) chẵn ( 1 )

Với n chẵn

=> n + 4 chẵn

=> ( n + 4 )( n + 7 ) chẵn ( 2 )

Từ ( 1 ) và ( 2 ) => ( n + 4 )( n + 7 ) chẵn với mọi n là số tự nhiên ( đpcm )

27 tháng 7 2020

TH1: Nếu n là số tự nhiên lẻ 

Đặt \(n=2a+1\)\(a\inℕ\))

Ta có: \(\left(n+4\right)\left(n+7\right)=\left(2a+1+4\right)\left(2a+1+7\right)=\left(2a+5\right)\left(2a+8\right)\)

\(=2.\left(2a+5\right).\left(a+4\right)\)luôn là 1 số chẵn

TH2: Nếu n là số tự nhiên lẻ 

Đặt \(n=2a\)\(a\inℕ\))

Ta có: \(\left(n+4\right)\left(n+7\right)=\left(2a+4\right)\left(2a+7\right)=2.\left(a+2\right).\left(2a+7\right)\)luôn là 1 số chẵn

Vậy với mọi \(n\inℕ\)thì \(\left(n+4\right)\left(n+7\right)\)là 1 số chẵn

20 tháng 7 2015

Nếu n+4 là số chẳn => n+7 là số lẻ => chẵn x lẻ = chẵn

Nếu n+4 là số lẻ => n+7 là số chẵn => lẻ x chẵn = chẵn

=> điều cần chứng minh

20 tháng 7 2015

Xét \(x=2k\left(k\in N\right)\), ta có:

\(\left(n+4\right)\left(n+7\right)=\left(2k+4\right)\left(2k+7\right)=2\left(k+2\right)\left(2k+7\right)\)chia hết cho 2

Xét \(x=2k+1\left(k\in N\right)\). ta có:

\(\left(n+4\right)\left(n+7\right)=\left(2k+5\right)\left(2k+8\right)=\left(2k+5\right)2\left(k+4\right)\)chia hết cho 2

Suy ra đpcm

 

3 tháng 9 2016

Xét hai trường hợp:

  • \(n=2k+1\Rightarrow\)\(\begin{cases}n+4=2k+1\\n+7=2k\end{cases}\) \(\Rightarrow\left(n+4\right)\left(n+7\right)=2k\) (lẻ nhân chẵn)
  • \(n=2k\Rightarrow\)\(\begin{cases}n+4=2k\\n+7=2k+1\end{cases}\) \(\Rightarrow\left(n+4\right)\left(n+7\right)=2k\) (chẵn nhân lẻ bằng chẵn)
3 tháng 9 2016

Vì (n+4)(n+7) là số chẵn nên (n+4).(n+7) chia hết cho 2

Xét:

Với n là số lẻ thì: (n+7) chia hết cho 2 => (n+4).(n+7) chia hết cho 2

Với n là số chẵn thì: (n+4) chia hết cho 2 => (n+4).(n+7)

Vậy với mọi số tự nhiên n thì (n+4).(n+7) là số chẵn

11 tháng 7 2023

Nếu n không chia hết cho 2 thì n có dạng 2k+1 (kϵN)

⇒ (n+4).(n+7)=(2k+1+4).(2k+1+7)=(2k+5).(2k+8)⋮2 (vì 2k+8⋮2) (1)

Nếu n chia hết cho 2 thì n có dạng 2k (kϵN)

⇒ (n+4).(n+7)=(2k+4).(2k+7)⋮2 (vì 2k+4⋮2) (2)

Từ (1) và (2)⇒ Với mọi số tự nhiên n thì tích (n+4).(n+7)⋮2 (ĐPCM)

 

11 tháng 7 2023

Vì n là số tự nhiên nên n có dạng 2k hoặc 2k + 1 ( k ϵ N )

Nếu n = 2k

⇒ 2k + 4 = 2( k + 2 ) ⋮ 2

Suy ra ( n + 4 )( n + 7 ) ⋮ 2 hay ( n + 4 )( n + 7 ) là số chẵn

Nếu n = 2k + 1

⇒ 2k + 8 = 2( k + 4 ) ⋮ 2

Suy ra ( n + 4 )( n + 7 ) ⋮ 2 hay ( n + 4 )( n + 7 ) là số chẵn

Vậy với mọi số tự nhiên n thì ( n + 4 )( n + 7 ) là số chẵn

Xét hai trường hợp :

TH1 : n = 2k 

Ta có : ( 2k + 4 ) ( 2k + 7 )

Vì 2k + 4 là số chăn nên cũng là chẵn

TH2 : n = 2k + 1

Ta có : ( 2k + 1 + 4 ) ( 2k + 1 + 7 )

Tương đương : ( 2k + 5 ) ( 2k + 8 )

Vì 2k + 8 là số chăn nên cũng chẵn

1 phút trước (13:43)

Vậy với mọi số tự nhiên n thì tích (n+4)(n+7) là một số chẵn

8 tháng 12 2018

+ nếu n chẵn => n+4 chẵn; n+7 lẻ => tích chẵn

+ nếu n lẻ => n+4 lẻ; n+7 chẵn => tích chẵn

=> với mọi n tích trên đều chẵn