Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H M
( hình hơi xấu :V )
Giả sử tam giác ABC vuông tại A( AB < AC) có AM là trung tuyến, AH là đường cao
Vì đường cao và đường trung tuyến ứng với cạnh huyền của tam giác tỷ lệ với 12 :13 , do đó đặt AH = 12x, AM =13 x
Suy ra BM = CM = 13x
Áp dụng định lý Pytago cho \(\Delta AHM\)có:
HM2= AM2 - AH2 = (13x)2 - (12x)2 = (25 x)2
=> HM = 5x
Do đó HC = 5x + 13x = 18x
Dễ thấy \(\Delta ABC\)Đồng dạng \(\Delta HAC\)(g.g)
=> \(\frac{AB}{AC}\)= \(\frac{HA}{HC}\)= \(\frac{12x}{18x}\)= \(\frac{2}{3}\)
=> kl
https://hoc247.net/hoi-dap/toan-7/chung-minh-dinh-ly-trong-1-tam-giac-vuong-duong-trung-tuyen-ung-voi-canh-huyen-bang-nua-canh-huyen-faq195049.html
Tham khảo nha bạn chứ mk ko biết cách chứng minh dùng đường trung bình
Bài giải:
Gọi a là độ dài cạnh huyền của tam giác vuông.
Theo định lí Pitago ta có:
a2 = 72 + 242 = 49 + 576 = 625
Nên a = 25cm
Trung tuyến ứng với cạnh huyền có độ dài bằng nửa độ dài cạnh huyền. Nên trung tuyến ứng với cạnh huyền có độ dài là 12,5cm.
Gọi a là độ dài cạnh huyền của tam giác vuông.
Theo định lí Pitago ta có:
a2 = 72 + 242 = 49 + 576 = 625
Nên a = 25cm
Trung tuyến ứng với cạnh huyền có độ dài bằng nửa độ dài cạnh huyền. Nên trung tuyến ứng với cạnh huyền có độ dài là 12,5cm.