K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

\(A=1+3+3^2+3^3+......+3^{99}\\ =\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\\ =40+3^4\left(1+3+3^2+3^3\right)+....+3^{96}\left(1+3+3^2+3^3\right)\\ =40+3^4.40+.....+3^{96}.40\\ =40\left(1+3^4+....+3^{96}\right)⋮40\)

26 tháng 12 2017

Chứng tỏ rằng tổng \(1+3+3^2+.....+3^{99}\)chia hết cho 40

=> \(1+3+3^2+.....+3^{99}\)

= \(3^0+3^1+3^2+.......+3^{99}\)

= \(\left(3^0+3^1+3^2+3^3\right)+\left(3^4+3^5+.....+3^{99}\right)\)

=\(3^0.\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+...+3^{95}\right)\)

=\(3^0.40+3^4.40+...+3^{95}\)

= 40. \(\left(3^0+3^4\right)+.....+3^{95}\)

Vậy 40. \(\left(3^0+3^4\right)+.....+3^{95}\)\(⋮\) 40

9 tháng 12 2017

1+3+3^2+...+3^99\(⋮\)40

(1+3+3^2+3^3)+...+(3^96+3^97+3^98+3^99)

1x(1+3+3^2+3^3)+...+3^96x(1+3+3^2+3^3)

1x40+...+3^96x40

=40x(1+...+3^96)\(⋮\)40

Vậy 1+3+3^2+...+3^99\(⋮\)40

9 tháng 12 2017

Ta có : 3C = 3 + 3^2 + 3^3 + ...3^12 
=> 3C - C = (3 + 3^2 + 3^3 + ...3^12) - (1+3+3^2+3^3+....+3^11) = 3^12 - 1 = 531440 
hay 2C = 531440 => C = 265720 =40*6643

26 tháng 12 2017

Gọi tổng đó là A:

A = 1 + 3 + 32 + 33 + ... + 399

A = ( 1 + 3 + 32 + 33 ) + ... + ( 396 + 397 + 398 + 399 )

A = 40 + ... + 396 · ( 1 + 3 + 32 + 33 )

A = 40 + ... + 396 · 40  \(⋮40\)

=> A \(⋮40\)

30 tháng 6 2016

S = (1 + 3) + (32+33)+.....+(398+399)

  = 4 + 32 .(1 + 3) + .....+398.(1+3)

 = 1 .4 + 32.4 + ..... +398.4

= 4.(1 + 32 + .... +398) chia hết cho 4

30 tháng 6 2016

B = (1 + 3) + (32+33)+.....+(389+390)

  = 4 + 32 .(1 + 3) + .....+390.(1+3)

 = 1 .4 + 32.4 + ..... +390.4

= 4.(1 + 32 + .... +390) chia hết cho 4

30 tháng 6 2016

a) S= 1+3+32+33+...+399

  3S= 3.(1+3+32+33+...+399)

 3S= 3+32+33+34+...+3100

3S - S =2S= 3100-1

Vậy S= \(\frac{3^{100}-1}{2}\)

26 tháng 11 2015

ta đảo  ngược A lại ta có 1+112+113+...+119

2A=112+113+114+....+119+1110

lấy 2A-A còn 1110 có tận cùng băng 0 nên chia hết 5