K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2023

 Xét các số \(10^{13},10^{12},10^{11},...,10^1,10^0\). Có tất cả 14 số như thế. Mà một số khi chia cho 13 chỉ có 13 số dư là \(0,1,2,...,12\) nên sẽ tồn tại 2 số \(10^i,10^j\left(0\le i< j\le13\right)\) có cùng số dư khi chia cho 13.

 \(\Rightarrow10^i-10^j⋮13\) 

 \(\Rightarrow10^i\left(10^{j-i}-1\right)⋮13\) 

 \(\Rightarrow10^{j-i}-1⋮13\)

Nếu \(j-i=1\) thì dẫn đến \(9⋮13\), vô lí. Vậy \(j-i\ge2\)

Ta thấy \(10^{j-i}-1=99...9\) (với \(j-i\) chữ số 9).

Từ đó suy ra 999...99 (\(j-i\) chữ số 9) \(⋮13\) 

hay \(9.111...11\) (\(j-i\) chữ số 1) \(⋮13\)

hay \(111...11\) (\(j-i\) chữ số 1) \(⋮13\)

hay \(222...22\) (\(i-j\) chữ số 2) \(⋮13\)

Vậy tồn tại một bội của 13 chỉ gồm toàn các chữ số 2.

 

 

10 tháng 9 2023

 Chỗ này mình sửa lại 1 chút là \(10^j-10^i⋮13\) nhé. Mặc dù cái trên về bản chất thì vẫn đúng (vì nếu \(a⋮13\) thì \(-a⋮13\)) nhưng nếu viết như trên thì đôi khi sẽ gây nhầm lẫn cho người đọc.