K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2023

Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2

TH1: Nếu a chia hết cho 3 => Đề bài đúng

TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)

=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng

TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)

=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng

TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)

2 tháng 12 2023

Bài 5:

Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3

Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2

Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4

Nhưng: 2 không chia hết cho 4

Nên: 4(b+1)+2 không chia hết cho 4

Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4 

Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)

2 tháng 8 2023

a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2

Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)

b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3

Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)

 

2 tháng 8 2023

c, Hai số tự nhiên liên tiếp là k và k+1

Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2

Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2

(ĐPCM)

d, Ba số tự nhiên liên tiếp là m;m+1 và m+2

Tích chúng: m(m+1)(m+2) 

+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3

+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3

+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3

=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)

 

20 tháng 10 2019

a) Gọi 4 số liên tiếp là a, a + 1, a + 2, a+3

Có: a + a + 1 + a + 2 + a + 3 = 4a + 6 chia 4 dư 2 

=> đpcm

b) Gọi 3 số tự nhiên liên tiếp là a,a+1,a+2

Có: (a+1)a(a+2) (1). Với a = 3k thì tích (1) chia hết cho 3.

Với a = 3k + 1 thì a + 2 chia hết cho 3 => (1) chia hết cho 3

Với a = 3k = 2 thì a + 1 chia hết cho 3 => (2) chia hết cho 3

Vậy a(a+1)(a+2) luôn chia hết cho 3 => đpcm.

14 tháng 12 2017

https://olm.vn/hoi-dap/question/118678.htm  Ok nha Giờ bn giúp mk làm bài toán hình học lớ 6 đc k

22 tháng 6 2015

Gọi a; a + 1; a + 2 là 3 số tự nhiên liên tiếp

Ta có a + a + 1 + a + 2 = 3a + 3 = 3(a + 1) chia hết cho 3

=> a + a + 1 + a + 2 chia hết cho 3

Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3

31 tháng 1 2018

Gọi ba số tự nhiên liên tiếp là : a ; a + 1 ; a + 2

Tổng của ba số này bằng :

          a + (a + 1) + (a + 2) = 3a + 3 = 3 (a + 1) chia hết cho 3

Suy ra : a + a + 1 + a + 2 chia hết cho 3

Vậy tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3