Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 111...11(n chữ số 1) có tổng các chữ số = 1 . n = n nên n chia cho 9 dư bao nhiêu thì 111...11(n chữ số 1) chia cho 9 dư bấy nhiêu.
Mà 10n = n0¯¯¯¯¯¯n0¯ nên n + 0 có cùng số dư với n. Vậy, 10n có cùng số dư với 111...11(n chữ số 1).
Vì 111...11(n chữ số 1) và 10n có cùng số dư khi chia cho 9 nên hiệu đó chia hết cho 9
Chứng tỏ rằng hiệu của 1 số và tổng các chữ số của nó chia hết cho 9? Từ đó, chứng tỏ C= 8n + 111..1 ( n chữ số 1; n thuộc N* ) chia hết cho 9?
Vì 111...11(n chữ số 1) có tổng các chữ số = 1 . n = n nên n chia cho 9 dư bao nhiêu thì 111...11(n chữ số 1) chia cho 9 dư bấy nhiêu.
Mà 10n = \(\overline{n0}\) nên n + 0 có cùng số dư với n. Vậy, 10n có cùng số dư với 111...11(n chữ số 1).
Vì 111...11(n chữ số 1) và 10n có cùng số dư khi chia cho 9 nên hiệu đó chia hết cho 9
xét: 111......11111 - 10n = (111.....1111 - n)- 9n
n số 1 n+1 số 1
mà 111...1111 - n \(⋮\)9 ( vì 1111.....111 và n khi chia cho 9 có cùng số dư.)
n số 1 n số 1
và 9n \(⋮\)9.
=> 111.......111 - n -9n \(⋮\)9
n số 1
=> 111.......1111 - 10n \(⋮\)9
vậy 111.......1111 - 10n \(⋮\)9.
bài này khó lắm bạn à
CHÚC BẠN MAY MẮN LẦN SAU
TK MÌNH NHÉ