K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

gọi d là UCLN ( 2n+1;2n\(^2\)+2n)

2n+1\(⋮\)d=> n(2n+1)\(⋮\)d=> (2\(n^2\)+n)\(⋮\)d

2n\(^2\)+nchia hết cho d

=> ( 2n\(^2\)+2n-(\(2n^2\)+n))\(⋮\)d

mà n\(⋮d\)

2n+1chia hết cho d

=> 2n+1-2n chia hết cho d

<=> 1chia hết cho d => d =1

vậy 2n+1.2n(n+1) luôn tối giản với \(\forall\) n

20 tháng 2 2019

bai nay kho qua

2 tháng 1 2017

Gọi UCLN(n+1,2n+3) = d

=> n + 1 chia hết cho d => 2(n + 1) chia hết cho d => 2n + 2 chia hết cho d

     2n + 3 chia hết cho d

=> 2n + 3 - (2n +  2) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> UCLN(n+1,2n+3) = 1

Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản

Gọi UCLN(2n+1,2n+3) = d

=> 2n+1 chia hết cho d

     2n+3 chia hết cho d

=> 2n+3 - (2n+1) chia hết cho d

=> 2 chia hết cho d

=> d \(\in\){1;2}

Vì 2n+1 lẻ nên d = 1

=>UCLN(2n+1,2n+3) = 1

Vậy \(\frac{2n+1}{2n+3}\) là phân số tối giản

22 tháng 1 2017

ai đúng cho tích

11 tháng 4 2016

để p/số trên tối giản thì ƯCLN  là 1,gọi số đó là d

n+1:d,2n+2:d

2n+3-2n-2:d

1:d

d=1

vậy p/số đó luôn tối giản

11 tháng 4 2016

gọi ƯC(n+1;2n+3)=d

ta có n+1 chia hết cho d nên 2(n+1) chia hết cho d nên 2n+2 cũng chia hết cho d , mặt khác 2n+3 chia hết cho d

nên 2n+3-(2n+2) chia hết cho d nên 1 chia hết cho d vậy ƯC của n+1 và 2n+3 là 1 hoặc -1

do đó mọi fân số dạng n+1/2n+3 đều là phân số tối giản

5 tháng 11 2017

Gọi d là \(ƯC\left(2n+3;3n+4\right)\)

Ta có: \(2n+3⋮d\Rightarrow3\left(2n+3\right)⋮d\Leftrightarrow6n+9⋮d\)

          \(3n+4⋮d\Rightarrow2\left(3n+4\right)⋮d\Rightarrow6n+8⋮d\)

\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)

\(\Rightarrow6n+9-6n-8⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{1\right\}\)

Vậy \(ƯCLN\left(2n+3;3n+4\right)=1\left(đpcm\right)\)

5 tháng 11 2017

Bn ghi ro de ra