Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đặt A=a(a+5)
TH1: a=2k
=>A=2k(2k+5) chia hết cho 2
TH2: a=2k+1
A=(2k+1)(2k+1+5)
=2(k+3)(2k+1) chia hết cho 2
=>A luôn chia hết cho 2
b: Đặt B=(a+3)(3a+4)
TH1: a=2k+1
B=(2k+1+3)[3(2k+1)+4]
=(2k+4)(6k+7)
=2(k+2)(6k+7) chia hết cho 2
TH2: a=2k
B=(2k+3)(3*2k+4)
=2(3k+2)(2k+3) chia hết cho 2
=>B chia hết cho 2
c: nếu a và b có cùng tính lẻ hoặc chẵn thì chắc chắn a+b sẽ chia hết cho 2
=>ab(a+b) chia hết cho2
Nếu a và b có một số chẵn, một số lẽ thì đương nhiên a*b sẽ chia hết cho 2
=>ab(a+b) chia hết cho 2
Do đó: ab(a+b) chia hết cho 2 với mọi số tự nhiên a,b
Bài giải
a, TH1 : Với a lẻ ta có : a + 3 = lẻ + lẻ = chẵn
a + 6 = lẻ + chẵn = lẻ
=> ( a + 3 ) ( a + 6 ) = chẵn x lẻ = chẵn \(⋮\) 2
TH2 : Với a chẵn ta có : a + 3 = chẵn + lẻ = lẻ
a + 6 = chẵn + chẵn = chẵn \(⋮\) 2
b, TH1 : Với a lẻ ta có : a + 5 = lẻ + lẻ =chẵn
=> a ( a + 5 ) = lẻ x chẵn = chẵn \(⋮\) 2
TH2 : Với a chẵn ta có : a + 5 = chẵn + lẻ = lẻ
=> a ( a + 5 ) = chẵn x lẻ = chẵn \(⋮\) 2
c, TH1 : a,b cùng chẵn
=> ab ( a + b ) = chẵn x chẵn x ( chẵn + chẵn ) = chẵn \(⋮\) 2
TH2 : a,b cùng lẻ
=> ab ( a + b ) = lẻ x ( lẻ + lẻ ) = chẵn \(⋮\) 2
TH3 : a,b một thừa số chẵn, một thừa số lẻ
=> ab ( a + b ) = chẵn ( lẻ + chẵn ) = chẵn x lẻ = chẵn \(⋮\) 2
1)Chia 5 du 3 tan cung chi co the la 3 hoac 8 ma so do chia het cho 2=> tan cung la 8
Cac chu so cua no giong nhau nen so do la 88
2)1885 nha Nguyệt Minh
\(B=3^2+3^3+...+3^{99}\)
\(3B=3^3+3^4+...+3^{100}\)
\(3B-B=\left(3^3+3^4+...+3^{100}\right)-\left(3^2+3^3+...+3^{99}\right)\)
\(2B=3^{100}-3^2\)
\(B=\frac{3^{100}-9}{2}\)
\(2B+9=3^{2n+4}\)
\(\Leftrightarrow3^{2n+4}=3^{100}\)
\(\Leftrightarrow2n+4=100\)
\(\Leftrightarrow n=48\).
A:7 (dư 5)
A:13 (dư 4)
=) A + 9 chia hết cho 7 và 13
7 và 13 đều là số nguyên tố => A + 9 chia hết cho 7 x 13 = 91
=> A chia cho 91 dư 91 - 9 = 82
Vậy số tự nhiên đó chia cho 7 dư 5, chia cho 13 dư 4. Nếu đem số đó chia cho 91 dư 82
a: Đặt A=a(a+5)
TH1: a=2k
=>A=2k(2k+5) chia hết cho 2
TH2: a=2k+1
A=(2k+1)(2k+1+5)
=2(k+3)(2k+1) chia hết cho 2
=>A luôn chia hết cho 2
b: Đặt B=(a+3)(3a+4)
TH1: a=2k+1
B=(2k+1+3)[3(2k+1)+4]
=(2k+4)(6k+7)
=2(k+2)(6k+7) chia hết cho 2
TH2: a=2k
B=(2k+3)(3*2k+4)
=2(3k+2)(2k+3) chia hết cho 2
=>B chia hết cho 2
c: nếu a và b có cùng tính lẻ hoặc chẵn thì chắc chắn a+b sẽ chia hết cho 2
=>ab(a+b) chia hết cho2
Nếu a và b có một số chẵn, một số lẽ thì đương nhiên a*b sẽ chia hết cho 2
=>ab(a+b) chia hết cho 2
Do đó: ab(a+b) chia hết cho 2 với mọi số tự nhiên a,b
em cảm ơn