Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân cả tử và mẫu của phân số \(\frac{1.3.5...39}{21.22.23...40}\) ta được:
\(\frac{\left(1.3.5...39\right).\left(2.4.6...40\right)}{\left(21.22.23...40\right).\left(2.4.6...40\right)}=\frac{1.2.3...39.40}{21.22.23...40.\left[\left(1.2\right).\left(2.2\right)....\left(2.20\right)\right]}\)
\(=\frac{1.2.3...39.40}{21.22.23...40.\left(1.2.3...20\right).2^{30}}=\frac{1.2.3...39.40}{1.2.3...20.21....40.2^{20}}=\frac{1}{2^{20}}\)
Suy ra điều phải chứng minh.
Nhân cả tử và mẫu với 2.4.6.....40, ta được:
\(\frac{1.3.5.....39}{21.22.23.....40}=\frac{\left(1.3.5.....39\right)\left(2.4.6.....40\right)}{\left(21.22.23.....40\right)\left(1.2.3.....20\right).2^{20}}=\frac{1}{2^{20}}\left(đpcm\right)\)
Vậy \(\frac{1.3.5.....39}{21.22.23.....40}\)=\(\frac{1}{2^{20}}\)
Nhân cả từ và mẫu với 2 . 4 . 6 ... 40 ta được:
\(\frac{1.3.5...39}{21.22.23...40}=\frac{\left(1.3.5...39\right)\left(2.4.6...40\right)}{\left(21.22.23...40\right)\left(2.4.6...40\right)}=\frac{1.2.3.4...39.40}{21.22.23...40.\left(1.2.3...20\right).2^{20}}=\frac{1}{2^{20}}\)(đpcm)
Vậy \(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
Ta có:\(\frac{1.3.5......39}{21.22.23........4}=\frac{1.3.5....39.2.4.6...40}{21.22.23......40.2.4.6.....40}\)
=\(\frac{40!}{21.22....40\left(1.2.3....20\right).2^{20}}\)
=\(\frac{40!}{40!2^{20}}=\frac{1}{2^{20}}\)
a) Nhân cả tử và mẫu với 2 . 4 . 6 ... 40 ta được :
\(\frac{1.3.5...39}{21.22.23...40}=\frac{\left(1.3.5...39\right).\left(2.4.6...40\right)}{\left(21.22.23...40\right).\left(2.4.6...40\right)}\)
\(=\frac{1.2.3...39.40}{1.2.3...40.2^{20}}=\frac{1}{2^{20}}\)
b) Nhân cả tử và mẫu với 2 . 4 . 6 ... 2n ta được :
\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3....2n\right)}=\frac{1.3.5...\left(2n-1\right).\left(2.4.6...2n\right)}{\left(n+1\right)\left(n+2\right)...\left(2n\right).\left(2.4.6...2n\right)}\)
\(=\frac{1.2.3...\left(2n-1\right).2n}{1.2.3...2n.2^n}=\frac{1}{2^n}\)
a)
\(D=2^{100}-2^{99}-2^{98}-...-2^3-2^2-2-1\)
\(D=2^{100}-2^{99}-2^{98}-...-2^3-2^2-2-1-1+1\)
\(D=2^{100}-2^{99}-2^{98}-...-2^3-2^2-2-\left(1+1\right)+1\)
\(D=2^{100}-2^{99}-2^{98}-...-2^3-2^2-2-2+1\)
\(D=2^{100}-2^{99}-2^{98}-...-2^3-2^2-\left(2+2\right)+1\)
\(D=2^{100}-2^{99}-2^{98}-...-2^3-2^2-2^2+1\)
..........
Làm tương tự như vậy đến hết, ta có D = 1
Vậy D = 1
b)
\(\frac{1\times3\times5\times...\times39}{21\times22\times23\times...\times40}\)
\(=\frac{\left(1\times3\times5\times...\times19\right)\times\left(21\times23\times...\times39\right)}{\left(22\times24\times...\times40\right)\times\left(21\times23\times...\times39\right)}\)
\(=\frac{1\times3\times5\times...\times19}{22\times24\times...\times40}\)
\(=\frac{1\times3\times5\times7\times3^2\times11\times13\times3\times5\times17\times19}{2\times11\times2^3\times3\times2\times13\times2^2\times7\times2\times3\times5\times2^5\times2\times17\times2^2\times3^2\times2\times19\times2^3\times5}\)
(Phân tích các số ra thừa số nguyên tố)
\(=\frac{1\times3^4\times5^2\times7\times11\times13\times17\times19}{2^{20}\times11\times3^4\times13\times7\times5^2\times17\times19}\)
\(=\frac{1}{2^{20}}\)
Vậy \(\frac{1\times3\times5\times...\times39}{21\times22\times23\times...\times40}=\frac{1}{2^{20}}\)
P/S: Câu b mình không chắc đâu nhé
a) Ta có:
\(\frac{1.3.5...39}{21.22.23...40}=\frac{1.3.5.7.11.13.15.17.19}{22.24.26.28.30.32.34.36.38}\)=\(\frac{1.3.5.7.9.11.13.15.17.19}{2.11.2^3.3.2.13.2^2.7.2.15.2^5.2.17.2^2.9.2.19.2^3.5}\)=\(\frac{1}{2.2^3.2.2^2.2.2^5.2.2^2.2.2^3}\)=\(\frac{1}{2^{1+3+1+2+1+5+1+2+1+3}}\)=\(\frac{1}{2^{20}}\)
Vậy \(\frac{1.3.5...39}{21.22.23...40}\)= \(\frac{1}{2^{20}}\)