K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2019

Giả sử ( x 0 ; y 0  ) là điểm cố định mà đường thẳng mx + 3 + (3m – 1)y = 0 luôn đi qua.

Ta có:

m x 0  + 3 + (3m - 1)  y 0  = 0 với mọi m

⇔ m x 0  + 3 + 3m y 0  - y 0  = 0 với mọi m

⇔ m( x 0  + 3 y 0 ) + 3 - y 0 = 0 với mọi m

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy điểm cố định mà đường thẳng luôn đi qua là (-9: 3)

16 tháng 6 2017

Gọi điểm cố định mà các đường thẳng (d) đều đi qua P( x o ,  y o ).

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Phương trình (*) nghiệm đúng với mọi giá trị không âm của k , do đó ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy, với k ≥ 0, các đường thẳng (d) đều đi qua điểm cố định P(1-  3 ;  3  – 1).

1 tháng 3 2022

???

1 tháng 3 2022

what?

4 tháng 6 2019

 Với k ≥ 0 ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Giả sử ( x 0 ; y 0 ) là điểm cố định mà (d) luôn đi qua

Khi đó ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy điểm cố định mà (d) luôn đi qua với mọi k ≥ 0 là (1- 3 ;  3 -1)

6 tháng 8 2019

Chứng minh họ đường thẳng y = mx + (2m + 1) (1) luôn đi qua một điểm cố định nào đó.

Giả sử điểm A( x o ;  y o ) là điểm mà họ đường thẳng (1) đi qua với mọi m. Khi đó tọa độ điểm A nghiệm đúng phương trình hàm số (1).

Với mọi m, ta có:  y o  = m x o  + (2m + 1) ⇔ ( x o  + 2)m + (1 – y) = 0

Vì phương trình nghiệm đúng với mọi giá trị của m nên tất cả các hệ số phải bằng 0.

Suy ra:  x o  + 2 = 0 ⇔  x o  = -2

1 –  y o  = 0 ⇔  y o = 1

Vậy A(-2; 1) là điểm cố định mà họ đường thẳng y = mx + (2m + 1) luôn đi qua với mọi giá trị m.

29 tháng 9 2022

???

16 tháng 7 2021

a) (d) đi qua điểm \(M\left(-3;1\right)\Rightarrow1=\left(2m-1\right).\left(-3\right)-4m+5\)

\(\Rightarrow1=-6m+3-4m+5\Rightarrow1=-10m+8\Rightarrow10m=7\Rightarrow m=\dfrac{7}{10}\)

\(\Rightarrow y=\dfrac{2}{5}x+\dfrac{11}{5}\)

b) Gọi \(A\left(x_A;y_A\right)\) là điểm cố định mà (d) luôn đi qua

\(\Rightarrow y_A=\left(2m-1\right)x_A-4m+5\)

\(\Rightarrow2mx_A-x_A-4m+5-y_A=0\Rightarrow2m\left(x_A-2\right)-\left(x_A+y_A-5\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x_A=2\\x_A+y_A-5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_A=2\\y_A=3\end{matrix}\right.\Rightarrow A\left(2;3\right)\)

\(\Rightarrow\) (d) luôn đi qua điểm \(A\left(2;3\right)\) cố định

a) Thay x=-3 và y=1 vào (d), ta được:

\(\left(2m-1\right)\cdot\left(-3\right)-4m+5=1\)

\(\Leftrightarrow-6m+3-4m+5=1\)

\(\Leftrightarrow-10m=-7\)

hay \(m=\dfrac{7}{10}\)