K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2015

chung minh 2 cai do co hieu la 1

giai dc ko

12 tháng 2 2018

Gọi d là ƯCLN của 2n+3 và 4n+8, ta có:
(4n+8)-(2n+3) chia hết cho d
4n+8-2(2n+3) chia hết cho d
4n+8-4n-6 chia hết cho d
4n-4n+8-6 chia hết cho d
2 chia hết cho d => d=2
nhưng vì 2n+3 lẻ nên d là số lẻ => d=1
vậy 2n+3/4n+8 là 2 phân số tối giản

8 tháng 4 2016

a) Đặt ( 15n+1 ; 30n+1 )=d

=>15n+1 chia hết cho d =>30n+2 chia hết cho d

30n+2 chia hết cho d

=>30n+2-30n-1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>15n+1 và 30n+1 nguyên tố cùng nhau

=>\(\frac{15n+1}{30n+1}\) tối giản

b)Đặt ( 2n+3;4n+8)=d

=>2n+3 chia hết cho d=>4n+6 chia hết cho d

4n+8 chia hết cho d

=>4n+8-4n-6 chia hết cho d

=>2 chia hết cho d

=>d= 1 hoặc 2

Mà 2n+3 là số lẻ

=>d khác 2

=>d=1

=>2n+3 và 4n+8 nguyên tố cùng nhau

=>\(\frac{2n+3}{4n+8}\) tối giản

k cho mk nhé

NV
1 tháng 3 2023

a.

Gọi \(d=ƯC\left(2n+3;4n+8\right)\)

Do \(2n+3\) luôn lẻ nên d phải là số lẻ

Ta có \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\)  \(\Rightarrow4n+8-2\left(2n+3\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

Mà d luôn lẻ \(\Rightarrow d=1\)

Vậy 2n+3 bà 4n+8 nguyên tố cùng nhau hay \(\dfrac{2n+3}{4n+8}\) tối giản

b. Tương tự gọi \(d=ƯC\left(3n+2;5n+3\right)\)

\(\Rightarrow\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\) \(\Rightarrow5\left(3n+2\right)-3\left(5n+3\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow3n+2\) và 5n+3 nguyên tố cùng nhau hay \(\dfrac{3n+2}{5n+3}\) tối giản

10 tháng 2 2019

giúp mình vs nha

11 tháng 6 2015

a)Gọi d là ƯCLN(n+1;2n+3)

=>2n+3 chia hết cho d

n+1 chia hết cho d

=>(2n+3)-(n+1)=n+2 chia hết cho d

Do n+1 và n+2 là 2 số nguyên liên tiếp mà d là ước chung của 2 số đó => d=1

=>2n+3 và n+1 là 2 số nguyên tố cùng nhau => phân số \(\frac{n+1}{2n+3}\) tối giản

b) làm tương tự cũng xét hiệu như thế nha!

26 tháng 6 2018

a,

gọi d là ƯCLN của \(\frac{n+1}{2n+3}\)ta có:

\(\text{(2n+3)-(n-1) ⋮d}\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow2n-2n+3-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

vậy \(\frac{n+1}{2n+3}\)là p/s tối giản với mọt số tự nhiên n

2 tháng 6 2018

Gợi Ư CLN\(\left(2n+3;4n+8\right)=d\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\Rightarrow2.\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow d=1;2\)

\(+d=2\Rightarrow2n+3⋮2\)

Mak 2n+3 ko chia hết cho 2

\(\Rightarrow d\ne2\)

\(\Rightarrow d=1\)

\(\Rightarrowđpcm\)