K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 8 2019

Lời giải:

a)

\(x(2x+1)-x^2(x+3)+x^3-x+3=2x^2+x-x^3-2x^2+x^3-x+3\)

\(=3\) không phụ thuộc vào biến (đpcm)

b)

\(4(x-6)-x^2(2+3x)+x(5x-4)+3x^2(x-1)\)

\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)

\(=(4x-4x)-24+(-2x^2+5x^2-3x^2)+(-3x^3+3x^3)\)

\(=-24\) không phụ thuộc vào biến.

c)

\((x^2+2x+3)(3x^2-2x+1)-3x^2(x^2+2)-4x(x^2-1)\)

\(=(3x^4-2x^3+x^2+6x^3-4x^2+2x+9x^2-6x+3)-(3x^4+6x^2)-(4x^3-4x)\)

\(=(3x^4-3x^4)+(-2x^3+6x^3-4x^3)+(x^2-4x^2+9x^2-6x^2)+(2x-6x+4x)+3\)

\(=3\) không phụ thuộc vào biến (đpcm)

27 tháng 5 2017

cố gắng là làm được

27 tháng 5 2017

câu 2:

a(b-c)-b(a+c)+c(a-b)=-2bc

ta có: 

a( b-c ) - b ( a +c )+ c(a-b)

=ab-ac-(ba+bc)+(ca-cb)

=ab-ac-ba-bc+ca-cb

=ab-ba-ac+ca-bc-cb

=0-0-bc-cb

=bc+(-cb)

=-2cb    hay -2bc

b)a(1-b)+a(a^2-1)=a(a^2-b)

Ta có:

a(1-b) + a(a^2-1)

=a-ab+(a^3-a)

=a-ab+a^3-a

=a-a-ab+a^3

=0-ab+a^3

=-ab+a^3

=a(-b +a^2)     hay a(a^2-b)

23 tháng 7 2020

a/ \(2\left(2x+x^2\right)-x^2\left(x+2\right)+\left(x^3-4x+3\right)\)

\(=2.2x+2x^2-x^3-2x^2+x^3-4x+3\)

\(=4x+2x^2-x^3-2x^2+x^3-4x+3\)

\(=3\)

=> Biểu thức trên không phụ thuộc vào giá trị của biến

b/ Có sai đề ko vậy ạ ?

16 tháng 9 2018

T ko biết làm, chỉ hỏi liên thiên thôi :)))

Hủ phải không???? OvO Dưa Trong Cúc

16 tháng 9 2018

- Ko lẽ t có đồg bọn =))

28 tháng 8 2016

\(4\left(x-6\right)-x^2\left(3x+1\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)

\(=4x-24-3x^3-x^2+5x^2-4x+3x^3-3x^2\)

\(=-24-x^2\) ( sai đề )

\(xy\left(3x^2-6xy\right)-3\left(x^3y-2x^2y^2-1\right)\)

\(=3x^3y-6x^2y^2-3x^3y+6x^2y^2+3\)

\(=3\)

28 tháng 8 2016

đề 1 sửa thành \(4\left(x-6\right)-x^2\left(3x+2\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)

25 tháng 5 2022

\(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3x^2-3x\\ =\left(x^3-3x^2+3x-1\right)-\left(x^3+8\right)+3x^2-3x\\ =x^3-3x^2+3x-1-x^3-8+3x^2-3x\\ =-9\)

Vậy biểu thức không phụ thuộc vào giá trị của biến

11 tháng 12 2017

1,

a,\(2x\left(3x^2-5x+3\right)\)

\(=6x^3-10x^2+6x\)

b,\(-2x\left(x^2+5x-3\right)\)

\(=-2x^3-10x^2+6x\)

c,\(-\dfrac{1}{2}x\left(2x^3-4x+3\right)\)

\(=-x^4+2x^2-\dfrac{3}{2}x\)

Bài 2:

a) \(\left(2x-1\right)\left(x^2-5-4\right)\)

\(=\left(2x-1\right)\left(x^2-9\right)\)

\(=2x^3-18x-x^2+9\)

b) \(-\left(5x-4\right)\left(2x+3\right)\)

\(=-\left(10x^2+15x-8x-12\right)\)

\(=-10x^2-7x+12\)

c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)

\(=8x^3-y^3\)

20 tháng 6 2018

\(\left(3x^2-2x+1\right)\left(x^2+2x+3\right)-4x\left(x^2-1\right)-3x^2\left(x^2+2\right)\)

\(=3x^4-2x^3+x^2+6x^3-4x^2+2x+9x^2-6x+3-4x^3+4x-3x^4-6x^2\)

\(=\left(3x^4-3x^4\right)-\left(2x^3-6x^3+4x^3\right)+\left(x^2-4x^2+9x^2-6x^2\right)+\left(2x-6x+4x\right)+3\)

\(=3\)

Vậy biểu thức trên không phụ thuộc vào biến.

20 tháng 6 2018

\(\left(3x^2-2x+1\right)\left(x^2+2x+3\right)-4x\left(x^2-1\right)-3x^2\left(x^2+2\right)\)

\(=3x^4+6x^3+9x^2-2x^3-4x^2-6x+x^2+2x+3-4x^3+4x-3x^4-6x^2\)

\(=\left(3x^4-3x^4\right)+\left(6x^3-2x^3-4x^3\right)+\left(9x^2-4x^2+x^2-6x^2\right)-\left(6x-2x-4x\right)+3\)

\(=0+0+0-0+3=3\)

29 tháng 8 2018

\(A=x^2-4x-x\left(x-4\right)-15\)

\(=x^2-4x-x^2+4x-15=-15\)   =>  đpcm

\(B=5x\left(x^2-x\right)-x^2\left(5x-5\right)-13\)

\(=5x^3-5x^2-5x^3+5x^2-13=-13\)   =>   đpcm

\(C=-3x\left(x-5\right)+3\left(x^2-4x\right)-3x+7\)

\(=-3x^2+15x+3x^2-12x-3x+7=7\)   =>   đpcm

29 tháng 8 2018

\(D=7\left(x^2-5x+3\right)-x\left(7x-35\right)-14\)

\(=7x^2-35x+21-7x^2+35x-14=7\)  =>   đpcm

\(E=4x\left(x^2-7+2\right)-4\left(x^3-7x+2x-5\right)\)

\(=4x^3-20x-4x^3+20x+20=20\)    =>    đpcm

\(H=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)

\(=5x^2-3x-x^3+x^2+x^3-6x^2-10x+3x=-10\) =>   đpcm

6 tháng 6 2016

a/ \(=8x^3+2x^2-8x^3-8x^2-8x^3-2x+3=-8x^3-6x^2-2x+3\)

b/ \(=3x^2+12x-7x+20+2x^3-3x^2-2x^3-5x=20\)

Biểu thức A phụ thuộc vào x còn B thì không.