Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

*Xét n=1
=> 37n+1 chia hết cho 1
*Xét n>1
=> 37n+1 không chia hết cho n
Vậy BCNN (n;37n+1) = n(37n+1)= 37n2 + . với mọi n > 0

Answer:
a) Ta đặt \(a=\left(n;37n+1\right)\) \(\left(a\inℕ^∗\right)\)
Ta có: n chia hết cho a
=> 37n chia hết cho a
=> 37n + 1 chia hết cho a
Do vậy: (37n + 1) - 37n chia hết cho a
=> 1 chia hết cho a
=> a là ước của 1
=> a = 1
=> 37n + 1 và n là hai số nguyên tố cùng nhau
\(\Rightarrow BCNN\left(n;37n+1\right)=\left(37n+1\right)n=37n^2+n\)

Tìm UCLN và BCNN của 60 và 72,chứng tỏ rằng với mọi số tự nhiên n thì tích (n+4)(n+5) chia hết cho 2


b: Gọi d=ƯCLN(7n+8;8n+9)
=>\(\begin{cases}7n+8\vdots d\\ 8n+9\vdots d\end{cases}\Rightarrow\begin{cases}56n+64\vdots d\\ 56n+63\vdots d\end{cases}\)
=>56n+64-56n-63⋮d
=>1⋮d
=>d=1
=>ƯCLN(7n+8;8n+9)=1
=>7n+8 và 8n+9 là hai số nguyên tố cùng nhau
a: Trong các số từ 10 đến 19, có 10 số có chữ số hàng chục là 1; các chữ số hàng đơn vị là các số từ 0 đến 9
Trong các số từ 20 đến 29, có 10 số có chữ số hàng chục là 2; các chữ số hàng đơn vị là các số từ 0 đến 9
Trong các số từ 30 đến 39, có 10 số có chữ số hàng chục là 3; các chữ số hàng đơn vị là các số từ 0 đến 9
Trong các số từ 40 đến 49, có 10 số có chữ số hàng chục là 4; các chữ số hàng đơn vị là các số từ 0 đến 9
...
Trong các số từ 80 đến 89, có 10 số có chữ số hàng chục là 8; các chữ số hàng đơn vị là các số từ 0 đến 9
Tổng của các chữ số hàng chục là:
\(10\left(1+2+\cdots+8\right)=10\left(8\cdot\frac92\right)=10\cdot4\cdot9=40\cdot9=360\)
Tổng của các chữ số hàng đơn vị là:
\(\left(0+1+2+\cdots+9\right)\times\left(8-1+1\right)=8\times9\times\frac{10}{2}=8\times5\times9=40\times9=360\)
Tổng các chữ số trong số A là:
360+360=720⋮9
=>A⋮9
edgdfeghrgfygùhruguehfjcfhhrjhjehjhdj