Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\overline{aaaaaa}=a.111111=a.3.37037\) \(⋮\)\(37037\)
b) Nhận thấy các hạng tử trong B đều chia hết cho 3 => B chia hết cho 3
\(B=3+3^3+3^5+3^7+...+3^{2017}+3^{2019}+3^{2021}\)
\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+....+\left(3^{2017}+3^{2019}+3^{2021}\right)\)
\(=3\left(1+3^2+3^4\right)+3^7\left(1+3^2+3^4\right)+...+3^{2017}\left(1+3^2+3^4\right)\)
\(=\left(1+3^2+3^4\right)\left(3+3^7+...+3^{2017}\right)\)
\(=91\left(3+3^7+....+3^{2017}\right)\)\(⋮\)\(91\)
mà (3;91) = 1
=> B chia hết cho 273
B chia hết cho 273
Còn câu a thì mình không biết nhé, xin lỗi bạn.
Có a là bội của b, b là bội của c
=> \(a⋮b\)và \(b⋮c\)
=> \(a⋮b⋮c\)
=> \(a⋮c\)
=> a là bội của c
Có a là bội của b =>a\(⋮\)b ( dấu \(⋮\)là chia hết nha )
Có b là bội của c =>b\(⋮\)c
Có a\(⋮\)b ,b\(⋮\)c =>a\(⋮\)c
=> a là bội của c
Ta có:
abcd - (a + b + c + d)
= 1000a + 100b + 10c + d - a - b - c - d
= 999a + 99b + 9c
= 9.(111a + 11b + c) chia hết cho 9 (đpcm)
ta có
abcd-(a+b+c+d)
=1000a+100b+10c+d-a-b-c-d
=(1000a-a)+(100b-b)+(10c-c)+d
=999a+99b+9c+d
=9.111a+9.11b+9.c+d
=9.(111a+11b+c+d) chia hết cho9
Theo nhận xét mowrddaafu về dấu hiệu chia hết cho 9 thì mọi số tự nhiên đều viết được dưới dạng tổng các chữ số của số đó cộng với một số chia hết cho 9
Ta có abcd=a cộng b cộng c cộng d cộng 1 số chia hết cho 9
=a cộng b cộng c cộng d cộng 9.k
Suy ra abcd-a cộng b cộng c cộng d=a cộng b cộng c cộng d cộng 9.k trừ a cộng b cộng c cộng d =9.k chia hết cho 9-------điều phải chứng minh-----
Câu 2 :
Ta có: abc = a00 + bc = a x 100 + bc
Vì a x 100 chia hết cho 25 (trong tích có 100 chia hết cho 25)
=> bc cũng phải chia hết cho 25 (Để abc chia hết cho 25)
Diễn đạt hơi lủng củng để dễ hiểu mong bạn thông cảm
a, gọi 3 số tự nhiên liên tiếp đó là : a; a + 1; a + 2
tổng của chúng là :
a + a + 1 + a + 2
= (a + a + a) + (1 + 2)
= 3a + 3
= 3(a + 1) ⋮ 3 (đpcm)
b, trong 2 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 2
=> tích của chúng chia hết chô 2 (đpcm)
c, gọi số tự nhiên có 3 chữ số giống nhau là : aaa (a là chữ số)
aaa = a.111 = a.3.37 ⋮ 37 (đpcm)
d, ab + ba
= 10a + b + 10b + a
= (10a + a) + (10b + b)
= 11a + 11b
= 11(a + b) ⋮ 11 (đpcm)
d, ab + ba
= 10a + b + 10b + a
= a ( 10 + 1) + b(10+1)
= a.11 + b.11
= ( a + b ).11 \(⋮\)11
Vậy ab + ba \(⋮\)11
Hok tốt
abcd - (a + b + c + d)
= 1000a + 100b + 10c + d - a - b - c - d
= (1000a - a) + (100b - b) + (10c - c) + (d - d)
= 999a + 99b + 9c
= 9(111a + 11b + c) luôn là bội của 3 và 9
=> abcd - (a + b + c + d) là bội của 3 và 9