Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai đề rùi
abc-cba chia het cho 99 moi đúng
Ta có
100a+10b+c-100c+10b+a
=100a+c-100c+a
=99a-99c=99(a-c)
Chia hết cho 99
Giả sử:
abc + ( 2a + 3b + c ) chia hết cho 7, ta có:
abc + ( 2a + 3b + c ) = a.100 + b.10 + c.1 + 2a + 3b + c = a.98 + 7.b
Vì a.98 chia hết cho 7 ( 98 chia hết cho 7 ), 7.b chia hết cho 7 => a.98 + 7.b chia hết cho 7.
=> abc + ( 2a + 3b + c ) chia hết cho 7.
Mà theo đề bài thì abc chia hết cho 7 => 2a + 3b + c chia hết cho 7.
ta có : abc=100a+10b+c
=98a+2a+7b+3b+c
=(98a+7b)+(2a+3b+c)
mà abc chia hết cho 7 suy rs (98a + 7b )+ (2a+3b+c)chia hết cho 7
mà 98a+7b chia hết cho 7
nên 2a+3b+c chia hết cho 7
Xét:
+) abc # ab => 10ab +c # ab => c # ab . Mà c < ab =>c=0
+) ab0 # a0 => 10a0+b0 # a0 => b0 # a0 => b # a (1)
+) ab0 # ba => 100a+b0 # ba => 99a+ba # ba => 99a # ba => 99 # ba => ba thuộc {11;33;99} (thỏa mãn(1))
Khi đó abc thỏa mãn tất cả các gt đầu bài (kiểm tra lại) (đpcm)
abcdeg=1000abc+deg
=1001abc-(abc-deg)
Từ đây có: 1001abc chia hết cho 7 (Vì: 1001 chia hết cho 7 thì 1001 abc cũng chia hết cho 7).
abc-deg chia hết cho 7 (Đề bài cho)
=> 1001abc-(abc-deg) chia hết cho 7 (Do có cả 1001abc và abc-deg đều chia hết cho 7-> Hiệu cũng sẽ chia hết cho 7).
=> abcdeg chia hết cho 7.
* Điều phải chứng minh.
cho S = 1+3+32+ 33 + 34 + .......+ 399
Tổng S có tổng cộng 100 số hạng
S = 1+3+32+ 33 + 34 + .......+ 399
= (1+3) +(32+ 33) + (34 +35) .......(388+ 399 ) có 50 nhóm
= 4 + 32.(1+3)+34(1+3)+........+388(1+3)
= 4+ 32.4+34.4+........+388.4
= 4 (1+ 32+34+........+388) chia hết cho 4
b)
= (1+3 + 32+ 33) + (34 +35+36+37) .......(386+387+388+ 399 ) có 100:4 = 25 nhóm
= (1+3 + 32+ 33) + 34.(1+3 + 32+ 33) .......386.(1+3 + 32+ 33)
= 40+ 34.40 .......386.40
= 40 ( 1 +34+ 38+....+386) chia hết cho 40
= 4+ 32.4+34.4+........+388.4
= 4 (1+ 32+34+........+388) chia hết cho 4
câu a là 1 hàng đẳng thức bạn nhé
Vế trái = (a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2
b) p^2-1=(p-1)(p+1)
Do p>3 và p là SNT => p ko chia hết cho 3 => p chia 3 dư 1 hoặc 2
+ Nếu p:3 dư 1 thì p-1 chia hết cho 3
+ Nếu p:3 dư 2 thì p+1 chia hết cho 3
=> p^2-1 chia hết cho 3.
Do p>3, p NT=> p lẻ=> p=2k+1
Thay vào đc p^2-1=2k(2k+2)
=4k(k+1)
Do k và k+1 là 2 số tự nhiên liên tiếp => chia hết cho 2
=> 4k(k+1) chia hết cho 8=> p^2-1 chia hết cho 8
Tóm lại p^2-1 chia hết cho 24 do (3,8)=1
2) p^4-1=(p^2-1)(p^2+1)
Theo câu a thì p^2-1 chia hết cho 24
Do p lẻ (p là SNT >3)
=> p^2 cx lẻ => p^2+1 chẵn do 1 lẻ
=> p^2+1 chia hết cho 2
=> p^4-1 chia hết cho 48 (đpcm).
Ta có : abc - cba = 100a + 10b + c - 100c -10b - a = ( 100a - a ) + ( 10b - 10b ) - (100c - c )= 99a - 99c = 99. ( a - c ) chia het cho 99
Nguyễn Đăng Mạnh Cường
A=100a+10b+c-(100c+10b+a)= 99a-99c=99(a-c)
A/99= a-c
Vậy A chia hết cho 99