![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ghi đề lại nha bạn. Không hiểu đề thì ai mà giúp bạn giải đươc
CẢM ƠN
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : f(-2) = 4a - 2b + c
f(3) = 9a + 3b + c
Lại có f(-2) + f(3) = 4a - 2b + c + 9a + 3b + c = 13a + b + 2c = 0(Vì 13a + b + 2c = 0)
=> f(-2) = - f(3)
=> [f(-2)]2 = -f(3).f(-2)
mà [f(-2)]2 \(\ge0\)
=> -f(3).f(-2) \(\ge0\)
=> f(-2).f(3) \(\le\)0
![](https://rs.olm.vn/images/avt/0.png?1311)
mình làm ngắn gọn thôi
Giả sử a < b < c thì a \(\ge\)2, b \(\ge\)3, c \(\ge\)5. Ta có :
\(\frac{1}{\left[a,b\right]}=\frac{1}{ab}\le\frac{1}{6},\frac{1}{\left[b,c\right]}=\frac{1}{bc}\le\frac{1}{15},\frac{1}{\left[c,a\right]}=\frac{1}{ca}\le\frac{1}{10}\)
Suy ra vế trái nhỏ hơn hoặc bằng :
\(\frac{1}{6}+\frac{1}{15}+\frac{1}{10}=\frac{1}{3}\)
Ta có :
n2 + n + 1 = n . ( n + 1 ) + 1
Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên ⋮2 ⇒n . ( n + 1 ) + 1 là một số lẻ nên không chia hết cho 4
Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9. Do đó n . ( n + 1 ) + 1 không có tận cùng là 0
hoặc 5 . Vì vậy, n2 + n + 1 không chia hết cho 5
P/s đùng để ý đến câu trả lời của mình
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề : ab + 4bc + ca \(\le\)0
Có : a + b + c = 0 => a = - b - c
Thay vào ab + 4bc + ca \(\le\)0 ta đc:
(-b - c).b + 4bc + c.(-b - c) \(\le\) 0
=> -b2 - bc + 4bc - bc - c2 \(\le\)0
=> -b2 - c2 + 2bc \(\le\)0
=> - (b2 - 2bc + c2) \(\le\) 0
=> -(b - c)2 \(\le\) 0 (luôn đúng)
Vậy ab + 4bc + ca \(\le\) 0
Ta có: (a+b).(1/a+1/b) = a.(1/a+1/b)+b.(1/a+1/b) = 1+a/b+b/a+1 = 2+(a^2+b^2)/ab (1)
Mà: (a-b)^2 >= 0 <=> a^2-2ab+b^2 >=0 <=> a^2+b^2 >= 2ab => (a^2+b^2)/ab >=2 (2)
Từ (1) và (2) => (a+b).(1/a+1/b) >= 4
Hình như bài này sai đề thì phải . ( a + b ) .(1/a + 1/b ) = a. 1/a + a. 1/b + b. 1/a b. 1/b = a/a +a/b +b/a +b/b = 1 + ( a/b + b/a ) +1 = 2 + ( a/b + b/a ) ( 1)
Giả sử a lớn hơn hoặc bằng b suy ra a= b+m Ta có a/b + b/a = b+m /b +b/b+m = 1+m/b + b/b+m lớn hơn bằng 1 + m/b+m + b/ b+m = 1+ m+b/ b+m = 1+ 1= 2 .Do đó a/b + b/a lớn hơn hoặc bằng 2 ( 2 )
từ 1 và 2 (a+b). (1/a +1/b) lớn hơn hoặc bằng 4