Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+\dfrac{1}{44}+...+\dfrac{1}{80}\)
\(=\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{60}\right)+\) \(\left(\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{80}\right)\)
Nhận xét:
\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}\) \(=\dfrac{1}{3}\)
\(\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{80}>\dfrac{1}{80}+\dfrac{1}{80}+...+\dfrac{1}{80}\) \(=\dfrac{1}{4}\)
\(\Rightarrow A>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}>\dfrac{1}{12}\)
Vậy \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{80}>\dfrac{1}{12}\) (Đpcm)
Đặt vế trái của Bất đẳng thức la A
\(A< \frac{1}{8}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{40}+\frac{1}{40}+\frac{1}{40}.\)
\(A< \frac{1}{8}+\frac{3}{10}+\frac{3}{40}=\frac{3}{10}< \frac{5}{10}=\frac{1}{2}\)
1/41 + 1/42 +....+1/80
Chia tổng trên thành 2 nhóm mỗi nhóm 20 số hạng. Ta được:
1/41 + 1/42+ .....+ 1/60 > 1/60.20 (mỗi số hạng trong tổng đều >1/60 và 1/60 = 1/60)
1/61 + 1/62 +......+ 1/80 > 1/80.20 (mỗi số hạng trong tổng đều > 1/80 và 1/80 = 1/80)
=> 1/41 + 1/42 +.....+1/61 > 1/3
1/61 + 1/62 +....+1/80 > 1/4
=> 1/41 +1/42 +...+1/80 < 1/3 + 1/4
=> 1/41 + 1/42 +....+ 1/80 < 7/12 (đpcm)
a)ta có: A=1/11+1/12+1/13+...+1/20
A>9.1/20
A)>9/20
Ta có 1/2=10/20
Vì 9/20<10/20=> A<1/2
Phần B cũng vậy
vi A=1/11+1/12+...+120>1/20.10
A=1/11+1/12+...+1/120>1/2
=>A>1/2
câu b làm như trên nhé
\(\frac{1}{8}=\frac{1}{8}\)
\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}<\frac{3}{10}\)
\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}<\frac{3}{40}\)
-> A <\(\frac{1}{8}+\frac{3}{10}+\frac{3}{40}=\frac{20}{40}=\frac{1}{2}\)
A<1/2 nhé!