K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2023

\(S=5+5^2+5^3+5^4+...+5^{2022}\)

\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+...+\left(5^{2021}+5^{2022}\right)\)

\(S=\left(5+5^2\right)+5^2\cdot\left(5+5^2\right)+5^4\cdot\left(5+5^2\right)+...+5^{2020}\cdot\left(5+5^2\right)\)

\(S=\left(5+5^2\right)\left(1+5^2+5^4+...+5^{2020}\right)\)

\(S=30\left(1+5^2+5^4+...+5^{2020}\right)\)

Vậy S chia hết cho 30

2 tháng 8 2023

S không thể chia hết cho 13 nhé

7 tháng 1

hết cứu

 

`#3107.101107`

\(A = 2 + 2^2 + 2^3 + ... + 2^{2020} + 2^{2021} + 2^{2022}\)

\(= (2 + 2^2) + (2^3 + 2^4) + ... + (2^{2021} + 2^{2022})\)

\(=2(1+2) + 2^3(1 + 2) + ... + 2^{2021}(1 + 2)\)

\(=(1 + 2)(2 + 2^3 + ... + 2^{2021})\)

\(= 3(2 + 2^3 + ... + 2^{2021})\)

Vì \(3(2 + 2^3 + ... + 2^{2021})\) \(\vdots\) \(3\)

`\Rightarrow A \vdots 3`

Vậy, `A \vdots 3.`

\(E=25\left[3\cdot\left(5+4^2+4^3+...+4^{2021}\right)+1\right]\)

\(=25\cdot\left(4^2+4^2+4^3+...+4^{2021}\right)\)

\(=25\cdot4^{2022}⋮4^{2022}\)

 

 

16 tháng 2 2022

b) ab+ba

Ta có:ab=10a+b

          ba=10b+a

 ab+ba=10a+b+10b+a

           =  11a  + 11b

Ta thấy: 11a⋮11   ;   11b⋮11

=>ab+ba⋮11 (ĐPCM)

11 tháng 5 2022

mikko biết