Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a-b=3\Rightarrow a=3+b\) Thay vào B ta được :\(B=\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{\left(3-8\right)+b}{b-5}-\frac{12+3b}{9+b+3}=\frac{b-5}{b-5}-\frac{12+3b}{12+3b}=1-1=0\)
Vậy B = 0
Ta có:
\(A+B=11\left(A-B\right)\)
\(\Rightarrow A+B=11A-11B\)
\(\Rightarrow\) B+11B=11A-A
Suy ra : 12B=10A
\(\Rightarrow\frac{A}{B}=\frac{10}{12}=\frac{6}{5}\)
Đặt \(\frac{x}{18}=\frac{y}{9}=k\)
\(\Rightarrow x=18k;y=9k\)
Thay vào P ta được:
\(P=\frac{2.18k-3.9k}{2.18k+3.9k}\)
\(\Rightarrow P=\frac{36k-27k}{36k+27k}\)
\(\Rightarrow P=\frac{k\left(36-27\right)}{k\left(36+27\right)}\)
\(\Rightarrow P=\frac{9k}{63k}\)
\(\Rightarrow P=\frac{1}{7}\)
Vậy \(P=\frac{1}{7}.\)
Với mọi x thuộc R Có (x^2-9)^2 \(\ge\) 0
[y-4] \(\ge\) 0
Suy ra (x^2-9)^2+[y-4] - 1 \(\ge\) -1
Xét A=-1 khi và chỉ khi (x^2-9)^2 và [y-4] đều bằng 0
Tự tính ra
Xin lỗi nhưng vì không biết nên mình phải dùng [ ] thay cho GTTĐ nhé
Xin lỗi nhiều tại mình o tìm được kí hiệu đó
a.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (1)
\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\dfrac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)(2)
Từ (1) và (2) suy ra: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
b.M = \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{50^2}\right)\)
= \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{2499}{2500}\)
= \(\dfrac{1.3.2.4.3.5...49.51}{2^2.3^2.4^2...50^2}\)
\(\dfrac{51}{2.50}=\dfrac{51}{100}\)
Lời giải:
a)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow \left(\frac{a}{b}\right)^2=\left(\frac{b}{d}\right)^2=\frac{(a+c)^2}{(b+d)^2}(1)\)
Mặt khác, \(\frac{a}{b}=\frac{c}{d}\Rightarrow \frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}(2)\) (áp dụng tính chất dãy tỉ số bằng nhau)
Từ \((1),(2)\Rightarrow \frac{(a+c)^2}{(b+d)^2}=\frac{a^2+c^2}{b^2+d^2}\)
b) Vì \(1-\frac{1}{2^2};1-\frac{1}{3^2};...;1-\frac{1}{50^2}<1\) nên:
\(\left\{\begin{matrix} \left \{ 1-\frac{1}{2^2} \right \}=1-\frac{1}{2^2}\\ \left \{ 1-\frac{1}{3^2} \right \}=1-\frac{1}{3^2}\\ ....\\ \left \{ 1-\frac{1}{50^2} \right \}=1-\frac{1}{50^2}\end{matrix}\right.\)
\(\Rightarrow M=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)....\left(1-\frac{1}{50^2}\right)\)
\(\Leftrightarrow M=\frac{(2^2-1)(3^2-1)(4^2-1)....(50^2-1)}{(2.3....50)^2}\)
\(\Leftrightarrow M=\frac{[(2-1)(3-1)...(50-1)][(2+1)(3+1)...(50+1)]}{(2.3.4...50)^2}\)
\(\Leftrightarrow M=\frac{(2.3...49)(3.4.5...51)}{(2.3.4...50)^2}=\frac{(2.3.4...49)^2.50.51}{2.(2.3....49)^2.50^2}=\frac{50.51}{2.50^2}=\frac{51}{100}\)
Với f(1) = 1, ta có:
a.1 + b = 1
hay: a + b = 1
~> b = 1 - a (1)
Với f(2) = 4, ta có:
a.2 +b =4
hay: a + b = 4 (2)
Thay (1) vào (2), ta có:
2a + b = 4
hay: 2a + 1 - a = 4
1a + 1 = 4
a = 4 - 1
a = 3
Lại có:
a + b = 1
hay: 3 + b = 1
b = 1 - 3
b = -2
Vậy, a = 3; b = -2
---
Bận ăn cơm nên giờ mới trả lời được :3
Vì A là giao điểm của hai tọa độ nên:
-3.x+1=-4.x
-3x+1=-4x
1=-4x-(-3x)
1=-4x+3x
1=-x
x=-1
Khi x=-1=>y=4
Vậy A có tọa độ là (-1;4)
a) Thiếu ĐK: \(a+b+c=0\)
Giải:
Ta có:
\(a^3+a^2c-abc+b^2c+b^3\)
\(=a^3+a^2c+a^2b-a^2b-abc+b^2c+b^3+b^2a-b^2a\)
\(=a^2\left(a+b+c\right)-a^2b-abc+b^2\left(a+b+c\right)-b^2a\)
\(=-a^2b-abc-b^2a\)
\(=-ab\left(a+b+c\right)\)
Mà \(a+b+c=0\) nên:
\(=-ab.0\)
\(=0\)
Vậy \(a^3+a^2c-abc+b^2c+b^3=0\) (Đpcm)