K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2024

\(B=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+\left(5^6+5^7+5^8\right)\\ =31+5^3\left(1+5+5^2\right)+5^6\left(1+5+5^2\right)\\ =31+5^3.31+5^6.31\\ =31.\left(1+5^3+5^6\right)⋮31\)

11 tháng 9 2024

\(A=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(A=40+...+3^8.40\)

\(A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

Mà 40 ⋮ 5; 40 ⋮ 8

\(\Rightarrow A⋮5;A⋮8\)

\(B=\left(1+5+5^2\right)+...+\left(5^6+5^7+5^8\right)\)

\(B=31+...+5^6.31\)

\(B=31.\left(1+...+5^6\right)\)

\(\Rightarrow B⋮31\)

12 tháng 10 2021

1.Chứng tỏ rằng:

a) 1+5+52+53+.......+5101:6

b)2+22+23+......+2106 vừa chia hết cho 31,vừa chia hết cho 5

2.Chứng tỏ rằng:

a)Nếu abc-deg chia hết cho 11 thì abc deg chia hết cho 11

b)Nếu abc chia hết cho 8 thì 4a +2b+c chia hết cho 8

12 tháng 10 2021

lạc đề rồi

1 tháng 11 2017

trả lời giúp mk với

20 tháng 11 2017

a bằng 14

b bằng 26

c bằng 15

17 tháng 7 2016

1) 

a) 1+5+5^2+5^3+....+5^101 

=(1+5)+(5^2+5^3)+....+(5^100+5^101)

=6+5^2.(1+5)+...+5^100(1+5)

=6+5^2.6+...+5^100.6 chia hết cho 6 , vì mỗi số hạng đều chia hết cho 6 

b) 2+2^2+2^3+...+2^2016

=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+1^10)+....+(2^2012+2^2013+2^2014+2^2015+2^2016)

=2.31+2^6.31+...+2^2012.31 chia hết cho 31

Tương tự như câu a lên mk rút gọn 

2) còn bài a kì quá abc deg là sao nhỉ 

b) abc chia hết cho 8 nên a ; b hoặc c chia hết cho 8 

bạn nghĩ thử đi bài 2b dễ lắm nếu ko bt thì hỏi lại 

 

 

 

26 tháng 11 2015

ta đảo  ngược A lại ta có 1+112+113+...+119

2A=112+113+114+....+119+1110

lấy 2A-A còn 1110 có tận cùng băng 0 nên chia hết 5

 

22 tháng 8 2018

\(a.\)\(5^{2003}+5^{2002}+5^{2001}\)

\(=5^{2001}.\left(1+5+5^2\right)\)

\(=5^{2001}.31\)

\(\Rightarrow5^{2003}+5^{2002}+5^{2001}⋮31\)

\(b.\)

\(1+7+7^2+7^3+......+7^{101}\)

\(=8+7^2.\left(1+7\right)+7^4.\left(1+7\right)+....+7^{100}.\left(1+7\right)\)

\(=8+7^2.8+7^4.8+.....+7^{100}.8\)

\(=8+8.\left(7^2+7^4+...+7^{100}\right)\)

Ta thấy cả hai số hạng đều chia hết cho 8

\(\Rightarrow1+7+7^2+7^3+......+7^{101}⋮8\)

22 tháng 8 2018

Mình cảm ơn :)