K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

Giúp tui nhé

28 tháng 10 2021

\(A=1+3+3^2+3^3+...+3^{99}+3^{100}\)

\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+....+\left(3^{98}+3^{99}+3^{100}\right)\)

\(A=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)

\(A=13+3^2.13+...+3^{98}.13\)

\(A=13\left(1+3^2+...+3^{98}\right)\)

Ta có : 

\(A=13\left(1+3^2+...+3^{98}\right)⋮13\)

\(\Rightarrow A=1+3+3^2+3^3+...+3^{99}+3^{100}⋮13\)

28 tháng 10 2021

Ai giúp tui đuy mà😭

29 tháng 10 2021

\(A=\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)

\(=13\cdot\left(1+...+3^{96}\right)⋮13\)

DD
7 tháng 11 2021

\(A=1+3+3^2+3^3+...+3^{98}\)

\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\)

\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^{96}\right)⋮13\).

23 tháng 10 2023

Chứng tỏ rằng A = 1 + 3 + 3^2 + 3^3 + ... + 3^97 + 3^98 chia hết cho 13

23 tháng 10 2015

TA CÓ:

A=30+3+32+33+........+311

(30+3+32+33)+....+(38+39+310+311)

3(0+1+3+32)+......+38(0+1+3+32

3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)

 

4 tháng 8 2021
Fikj Hrtui
21 tháng 10 2015

cug dễ thôi nhưng tự làm đê

1 tháng 1 2016

nó tự làm được thì đâu có cần hỏi

27 tháng 2 2020

S=1+3+32+33+34+35+...+397+398

S= (1+3+32)+(33+34+35)+...+(396+397+398)

S=(1+3+32)+33(1+3+32)+...+396(1+3+32)

S=1.13+33.13+...+13.396

S =13. (1+33+...+396) chia hết cho 3

vậy S chia hết cho 3

b) S=1+3+32+33+34+35+...+397+398

3.S=3.(1+3+32+33+34+35+...+397+398)

3S=3+32+33+34+35+...+398+399

3S-S=3+32+33+34+35+...+398+399- (1+3+32+33+34+35+...+397+398)

2S= 3+32+33+34+35+...+398+399- 1-3-32-33-34-35-...-397-398

2S=399- 1 suy ra S=(399- 1):2

Bạn tham khảo link này:

https://olm.vn/hoi-dap/detail/400920599.html

Chúc bạn học tốt

Forever

17 tháng 12 2016

(3x - 1)3 = 125

(3x - 1)3 = 53

=>3x - 1 = 5

3x = 5 + 1

3x = 6

x = 6 : 3

x = 2

A = 1+5+52+53+...+597+598

A = (1 + 5 + 52) + (53 + 54 + 55) + ... + (596 + 597 + 598)

A = 1(1 + 5 + 52) + 53(1 + 5 + 52) + ... + 596(1 + 5 + 52)

A = 1.31 + 53.31 + ... + 596.31

A = 31(1 + 53 + ... + 596)

Vì 31(1 + 53 + ... + 596) \(⋮\)nên A \(⋮\)31

Vậy A \(⋮\)31

17 tháng 12 2016

a, \(\left(3x-1\right)^3=125\Leftrightarrow\left(3x-1\right)^3=5^3\)

\(\Rightarrow3x-1=5\Rightarrow3x=5+1\Rightarrow3x=6\Rightarrow x=6\div3=2\)

Vậy x = 2

b, Xét dãy số mũ : 0;1;2;3;...;97;98

Số số hạng của dãy số trên là :

\(\left(98-0\right)\div1+1=99\) ( số )

Ta được số nhóm là :

\(99\div3=33\) ( nhóm )

Ta có : \(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{96}+5^{97}+5^{98}\right)\) (33 nhóm )

\(A=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+...+5^{96}\left(1+5+5^2\right)\)

\(A=1.31+5^3.31+...+5^{96}.31=\left(1+5^3+...+5^{96}\right).31\)

Mà : \(31⋮31;1+5^3+...+5^{96}\in N\Rightarrow A⋮31\) (đpcm)

21 tháng 12 2016

A = 1 + 5 + 5^2 + 5^3 + ....... + 5^97 + 5^98

5A = 5 + 5^2 + 5^3 + 5^4 + .......... + 5^98 + 5^99

5A = 5( 1 + 5 + 5^2 ) + 5^4( 1 + 5 + 5^2 ) + ......... + 5^97( 1 + 5 + 5^2)

5A = 5.  31               + 5^4  . 31 + ........ + 5^97 . 31

5A = 31( 5 + 5^4 + ....... + 5^97 )         chia hết cho 31

5A chia hết cho 31 => A chia hết cho 31

22 tháng 10 2017

Bạn gì ơi 5A /31 nhưng A ko / 31 thì sao