Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề đầy đủ thế này :
Chúng tỏ rằng : 71 + 72 + 73 + 74 + 75 + 76 chia hết cho 50 .
Đúng không bạn ?
Ta có: \(A=7^3+7^4+7^5+7^6+...+7^{98}\)
\(\Rightarrow A=\left(7^3+7^4\right)+\left(7^5+7^6\right)+...+\left(7^{97}+7^{98}\right)\)
\(\Rightarrow A=7^3\left(1+7\right)+7^5\left(1+7\right)+...+7^{97}\left(1+7\right)\)
\(\Rightarrow A=7^3.8+7^5.8+...+7^{97}.8\)
\(\Rightarrow A=\left(7^3+7^5+...+7^{97}\right).8⋮8\)
\(\Rightarrow A⋮8\)
Vậy \(A⋮8\)
A=(5+5^2)+(5^3+5^4)+...(5^299+5^300)
A=5(1+5)+5^2(1+5)+...+5^299(1+5)
A=5.6+5^2.6+...+5^299.6 => Achia hết cho 6.
Tường tự phần A nhóm 3 số với nhau chia hết cho 31
phần B đường nhiên sẽ chia hết cho 7 vì mỗi số hạng đều chia hết cho 7, nhóm 2 số với nhau chia hết cho 8
Câu 1/ \(A=1+7+7^2+7^3+7^4+7^5\) Nhân hai vế với 7 được :
\(7A=7+7^2+7^3+7^4+7^5+7^6\) Do đó : \(6A=7^6-1\) (Đã lấy đẳng thức dưới trừ đẳng thức trên vế theo vế tương ứng)
Suy ra : \(A=\frac{\left(7^3\right)^2-1}{6}=\frac{\left(7^3-1\right)\left(7^3+1\right)}{6}=\)\(\frac{\left(7-1\right)\left(7^2+7.1+1^2\right)\left(7+1\right)\left(7^2-7.1+1^2\right)}{6}\)
(Đã khai triển các hằng đẳng thức đáng nhớ ) Như vậy : \(A=\left(7^2+8\right).8.\left(7^2+6\right)\) Là số chia hết cho 8
Câu 2/ Chứng tỏ : (2n + 5) chia hết cho (n + 1) .Câu này đề sai .Khi n = 1 đã sai rồi .
Câu 3 : Giải tương tự câu 1
a, = (7^1+7^2)+(7^3+7^4)+(7^5+7^6)
= 7.(1+7)+7^3.(1+7)+7^5.(1+7)
= 7.8+7^3.8+7^5.8 = 8. (7+7^3+7^5) chia hết cho 8
k mk nha
= (7+72)+(73+74)+(75+76)
= 7(1+7)+73(1+7)+75(1+7)
= 7.8 + 73.8 +75.8
=8.(7+73+75) chia hết cho 8
7+72+73+...+78=(7+73)+(75+77)+(72+74)+(76+78)=7(1+72)+75(1+72)+72(1+72)+76(1+72)=50.7+50.75+50.72+50.76
=50.(7+72+75+76) chia het cho 50. goog luck
71+72+73+74+75+76
=7.(7+1) + \(7^3.\left(1+7\right)\)+ \(7^5.\left(1+7\right)\)
=\(7.8+7^3.8+7^5.8\)
=\(8.\left(7+7^3+7^5\right)\)
vì 8 \(⋮\)8 nên \(8.\left(7+7^3+7^5\right)⋮8\)
nên \(7^1+7^2+7^3+7^4+7^5+7^6\)chia hết cho 8
71+72+73+74+75+76
=(71+72) + (73+74) + (75+76)
=7(7+1) + 73(1+7) + 75(1+7)
=7x8 + 73x8 + 75x8
(vì mỗi số hạng chia hết cho 8)