Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. A.
\(n+2⋮n+1\)
\(\Rightarrow\left(n+1\right)+1⋮\left(n+1\right)\)
Mà \(\left(n+1\right)⋮\left(n+1\right)\)
Nên \(1⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)€\)Ư(1)
(n+1) € {1;—1}
TH1: n+1=1 TH2: n+1=—1
n =1–1 n =—1 —1
n =0 n =—2
Vậy n€{0;—2}
1a)
n+2 chia hết cho n-1
hay (n-1)+3 chia hết cho n-1 (vì (n-1)+3=n+2)
Mà (n-1) chia hết cho n-1
nên 3 chia hết cho n-1
Suy ra n-1 thược Ư(3)={1;-1;3;-3}
Suy ra n thuộc {2;0;4;-2}
b) 3n-5 chia hết cho n-2
hay (3n-6)+1 chia hết cho n-2 (vì (3n-6)+1=3n-5)
3(n-2)+1 chia hết cho n-2
Mà 3(n-2) chia hết cho n-2
nên 1 chia hết cho n-2
Suy ra n-2 thược Ư(1)={1;-1}
Suy ra n thuộc {3;1}
Co 101 cap 2 so
(1+7)+(7^2+7^3)+...+(7^200+7^201)
(1+7)+7^2(1+7)+...+7^200(1+7)
8+7^2*8+...+7^200*8
8*(1+7^2+...+7^200
Nho cho to nhe!!!!!!!!!
Trả lời :
Bn tham khảo link này :
Câu hỏi của Linh Chi - Toán lớp 6 - Học toán với OnlineMath
n^2 + n + 1 = n( n + 1 ) + 1
n( n + 1 ) là tích của 2 số tự nhiên liên tiếp nên gồm 1 lẻ , 1 chẵn => n(n + 1 ) chẵn <=> n( n + 1 ) + 1 lẻ .
Mà số lẻ thì không chia hết cho 2 .
=> n( n + 1 ) + 1 không chia hết cho 2 . Mà 4 = 2^2
=> n( n + 11 ) + 1 cũng không chia hết cho 4
Vì n( n + 1 ) là tích của hai số tự nhiên liên tiếp nên sẽ có tận cùng là 0 ; 2 ; 6
=> n( n + 1 ) + 1 có tận cùng là 1 ; 3 ; 7
Vậy n( n + 1 ) + 1 không chia hết cho 5
n^2 + n + 1 = n( n + 1 ) + 1
n( n + 1 ) là tích của 2 số tự nhiên liên tiếp nên gồm 1 lẻ , 1 chẵn => n(n + 1 ) chẵn <=> n( n + 1 ) + 1 lẻ .
Mà số lẻ thì không chia hết cho 2 .
=> n( n + 1 ) + 1 không chia hết cho 2 . Mà 4 = 2^2
=> n( n + 11 ) + 1 cũng không chia hết cho 4
Vì n( n + 1 ) là tích của hai số tự nhiên liên tiếp nên sẽ có tận cùng là 0 ; 2 ; 6
=> n( n + 1 ) + 1 có tận cùng là 1 ; 3 ; 7
Vậy n( n + 1 ) + 1 không chia hết cho 5
\(3^{n+2}+3^n=3^n.3^2+3^n=3^n.9+3^n=3^n\left(9+1\right)=10.3^n⋮10\)
Đề sai nhé !
Giả sử thay n = 2 thì 3.2 + 1 = 7 không chia hết cho 3
Đề phải là tìm số n để 3n + 1 chia hết cho n + 1
Ta có : 3n + 1 chia hết cho n + 1
<=> 3n + 3 + 5 chia hết cho n + 1
<=> 3(n + 1) + 5 chia hết cho n + 1
<=> 5 chia hết cho n + 1
<=> n + 1 thuộc Ư(5) = {1;5}
+ n + 1 = 1 => n = 0
+ n + 1 = 5 => n = 4
3n + 1 \(⋮\)n + 1
= 3( n + 1 ) \(⋮\)n + 1
Vì n + 1 \(⋮\)n + 1 cho nên 3 \(⋮\)n + 1 \(\Rightarrow\)n + 1 \(\in\)Ư(3)
Mà Ư(3) = { 1;-1;3;-3 } \(\Rightarrow\)n + 1 = { 1;-1;3;-3 } \(\Rightarrow\)n \(\in\){ 0;-2;2;-4 }