K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2021

Ta thấy : \(\left\{{}\begin{matrix}3^{100}=\left(3^4\right)^{25}\\9^{990}=\left(3^2\right)^{990}=3^{1980}=\left(3^4\right)^{495}\end{matrix}\right.\)

Thấy 34 có chữ số tận cùng là 1 .

=> (34)25 và ( 34)495 có chữ số tận cùng là 1 .

=> \(\left(3^4\right)^{25}+\left(3^4\right)^{495}\) sẽ có chữ số tận cùng là 2 .

\(\Rightarrow\left(3^4\right)^{25}+\left(3^4\right)^{495}⋮2\)

=> ĐPCM

9 tháng 2 2021

Ta có \(3\equiv1\left(mod2\right)\) \(\Rightarrow3^{100}\equiv1^{100}\equiv1\left(mod2\right)\)

          9\(\equiv1\left(mod2\right)\) \(\Rightarrow9^{100}\equiv1^{100}\equiv1\left(mod2\right)\) 

\(\Rightarrow3^{100}+9^{100}\equiv1+1\equiv2\equiv0\left(mod2\right)\) 

\(\Rightarrow3^{100}+9^{100}⋮2\) Vậy...

18 tháng 1 2018

Vì 3 và 19 là các số lẻ lên 3^x và 19^y luôn lẻ .

=> 3^100 và 19^900 đều là số lẻ .

Mà số lẻ + số lẻ = số chẵn . Số chẵn lại chia hết cho 2

=> 3^100 + 19^900 chia hết cho 2

18 tháng 1 2018

Ta có : \(3^{100}=3^{4.25}=\left(3^4\right)^{25}\)

Mà \(3^4\) có chữ số tận cùng là 1 nên \(\left(3^4\right)^{25}\)có chữ số tận cùng là 1

\(19^{990}\) có chữ số tận cùng là 1

\(\Rightarrow3^{100}+19^{990}\) có chữ số tận cùng là 2

\(\Rightarrow\left(3^{100}+19^{990}\right)⋮2\) 

30 tháng 3 2017

3x  có chữ số tận cùng là số lẻ 

Suy ra 3100 có chữ số tận cùng là số lẻ

         19990 có chữ số tận cùng là số lẻ

  Suy ra 3100 +19990 có chữ số tận cùng là : lẻ + lẻ = chẵn

   Vậy 3100 +19990  chia hết cho 2

18 tháng 5 2023

3x  có chữ số tận cùng là số lẻ 

Suy ra 3100 có chữ số tận cùng là số lẻ

         19990 có chữ số tận cùng là số lẻ

  Suy ra 3100 +19990 có chữ số tận cùng là : lẻ + lẻ = chẵn

   Vậy 3100 +19990  chia hết cho 2

30 tháng 3 2017

mk nghĩ là thê này nè :

a / Ta co : \(3^{100}=\left(3^4\right)^{25}=\left(....1\right)^{25}=....1\) (1)

\(19^{990}=19^{989}.19=\left(....9\right).19=....1\) (2)

Từ (1) và (2) \(=>\left(3^{100}+19^{990}\right)=\left(....1\right)+\left(....1\right)=....2\)

\(=>\)\(\left(3^{100}+19^{990}\right)⋮2\) (chữ sô tận cùng của tổng trên là sô chẵn nên tổng trên chia hêt cho 2 ) (đpcm)

b / Gọi 4 sô tự nhiên liên tiêp là a, a+1, a+2, a+3

Theo bài ra ta co :

\(a+a+1+a+2+a+3=\left(a+a+a+a\right)+\left(1+2+3\right)=4a+6\)

\(4a⋮4\)(vì 4\(⋮\)4) (1)

Mà 6\(⋮̸\)4 (2)

Từ (1) và (2) => a + a + 1 + a + 2 + a + 3

Hay tổng của 4 sô tự nhiên liên tiêp không chia hêt cho 4 (đpcm)

tick cho mk nha

1 tháng 3 2018

đpcm là gì vậy bạn

22 tháng 12 2017

a/ (3n)100=(3n)4.25=(81n)25 chia hết cho 81.

b/ tao biết mà tự làm đi dễ lắm

c/ dựa vào dấu hiệu chia hết cho 9

22 tháng 12 2017

b)  \(\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+.........+\left(3^{28}+3^{29}+3^{30}\right)\)

      \(3\left(13\right)+3^4\left(13\right)+..........+3^{28}\left(13\right)\)

        \(13\left(3+3^4+.........+3^{28}\right)⋮13\)

c/ \(10^{2015}+17\)

    \(10^{2015}+17=1000.........00000000+17\)

                              \(=10000......0000017\)

                                \(1+0+0+0+0+....0+1+7=9⋮9\)

         

3 tháng 11 2017

10^9 + 2 = 100....0 + 2 = 100...02.

Tổng các chữ số của số trên là:

1 + 0 + ... + 0 + 2 = 3.

Vậy số trên chia hết cho 3 vì có tổng các chữ số chia hết cho 3 => 10^9 + 2 chia hết cho 3 (đpcm)

Bài kia làm tương tự

3 tháng 11 2017

giải đi bạn