Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
\(5^{333}=\left(5^3\right)^{111}=125^{111}\)
\(3^{555}=\left(3^5\right)^{111}=243^{111}\)
Vì \(125^{111}< 243^{111}\Rightarrow5^{333}< 3^{555}\)
Vậy \(125^{111}< 243^{111}\Rightarrow5^{333}< 3^{555}\)
1) Ta có : (an)m = an.an...an = an.m (đpcm)
m thừa số
2) a. Ta có 5333 = (53)111 = 125111
Lại có 3555 = (35)111 = 243111
Vì 125 < 243
=> 125111 < 243111
=> 5333 < 3555
b. 2400 = 24.100 = (24)100 = 16100
4200 = 42.100 = (42)100 = 16100
=> 2400 = 4200 (= 16100)
3) Ta có 32008 = (34)502 = 81502
Vì ta có 81.81 = 6561 (có 4 chữ số)
=> 81.81.81 = 531441 (có 6 chữ số)
Nhận thấy tích của x số 81 là số có 2x chữ số
mà 81502 có 502 số 81 và số đó có 502 . 2 = 1004 chữ số < 1005
=> 32008 là số có ít hơn 1005 chữ số
Câu hỏi của Nguyễn Thị Trà My - Toán lớp 6 - Học toán với OnlineMath
Bác tham khảo ở đây đi!
ngu quy tắc thì quy tắc nhưng người ta đã chứng tỏ được mới là qui tắc
Bài 1:
a: \(=2^{24}+2^{60}=2^{24}\left(2^{36}+1\right)\)
\(=2^{24}\left(2^4+1\right)\cdot A=17\cdot B⋮17\)
b: \(A=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\cdot\left(2+2^5+...+2^{57}\right)\) chia hết cho 3;5;15
\(A=2\left(1+2+2^2+...+2^{59}\right)⋮2\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
Bài 1)
a) Ta có: \(A=m^2+m+1=m(m+1)+1\)
Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn
Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$
b)
Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1
Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3
Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2
Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3
Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1
Như vậy tóm tại $A$ không chia hết cho 5
Bài 2:
a) \(P=2+2^2+2^3+...+2^{10}\)
\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)
\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)
\(=3(2+2^3+2^5+..+2^9)\vdots 3\)
Ta có đpcm
b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)
\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)
\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)
Ta có dpcm.
bài 2 :
Gọi UCLN ( n+3; 2n+5) là d
\(\Rightarrow n+3⋮d;2n+5⋮d\)
\(\Rightarrow2n+6⋮d;2n+5⋮d\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow2n+6-2n-5⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
mà 1 là UCLN(n+3;2n+5)
\(\Rightarrow d=1\)
a, Gói 5 số tự nhiên liên tiếp là a,á+1,a+2.a+3.a+4(a thuộc N)
+Nếu a chia hết cho 5 , bài toán giải xong
+ Nếu a chia 5 dư 1, đặt a=5b+1(b thuộc N ) ta có a+4=5b+1+4=(5b+5) chia hết cho 5
+ Nếu a chia 5 dư 2, đặt a=5c+2 (c thuộc N) ta có a+3=5c+2+3=(5c+5) chia hết cho 5
+ Nếu a chia 5 dư 3 , đặt a=5d+3(d thuộc N) ta có a+2=5đ +3+2=(5d+5) chia hết cho5
+ Nếu a chia 5 dư 3, đặt a= 5e +4 ( e thuốc N ) ta có a+1=5e+4+1=(5e+5) chia hết cho 5
Vậy trong 5 số tự nhiên liên tiếp, có một số chia hết cho 5
b, 19 m+19m+1,19m+2,19m+3,19m+4 là 5 số tự nhiên liên tiếp nên theo câu a có 1 số chia hết cho 5 ma 19m ko chia hết cho 5 với mọi m thuộc N
do đó : 19m+1,19m+2,19m+3,19m+4 có 1 số chia hết cho 5
=>(19m+1);(19m+2) (19m+3), (19m+4) chia hết cho 5
ta có khái niệm lũy thừa : an=a*a*a*...*a (n thừa số a)
=> (a^m)^n = a^m*a^m*a^m*...*a^m (n số ^m)
=> (2^4)^3 =2^4*2^4*2^4 = 2^12 (3 số 2^4)