K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2021

\(2^1+2^2+2^3+...+2^{100}\)

\(=\)\(2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{99}.\left(1+2\right)\)

\(=\)\(2.3+2^3.3+...+2^{99}.3\)

\(=\)\(3.\left(2+2^3+...+2^{99}\right)\)

\(=\)\(2^1+2^2+2^3+...+2^{100}⋮3\left(đpcm\right)\)

17 tháng 3 2017

chắc bạn chép sai đầu bài ý a rồi , mình sửa lại nhé

Đặt A=\(2+2^2+2^3+...+2^{100}\)

Tổng A có :(100-1):1+1=100(số hạng)

=>A=\(2+2^2+2^3+...+2^{100}\)

A=\(\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

(có \(\dfrac{100}{5}=20\) nhóm , mỗi nhóm có 5 số hạng)

A=\(2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

A=\(2.31+2^6.31+...+2^{96}.31\)

A=\(31.\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)

18 tháng 3 2017

Sửa đề câu a tí nhé:

Chứng tỏ \(\left(2+2^2+2^3+...+2^{100}\right)\)chia hết cho 31

Giải:

Đặt \(S=\left(2+2^2+2^3+...+2^{100}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)+...+\left(1+2+2^2+2^3+2^4\right).2^{96}\)

\(=2.31+2^6.31+...+2^{96}.31\)

\(=31.\left(2+2^6+...+2^{96}\right)\)

\(\Rightarrow S⋮31\)

24 tháng 6 2015

2+22+...+2100

=(2+22)+...+(299+2100)

=2(1+2)+...+299(1+2)

=3.(2+...+299) chia hết cho 3

Vậy 2+22+...+2100 chia hết cho 3

23 tháng 10 2015

TA CÓ:

A=30+3+32+33+........+311

(30+3+32+33)+....+(38+39+310+311)

3(0+1+3+32)+......+38(0+1+3+32

3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)

 

4 tháng 8 2021
Fikj Hrtui
12 tháng 12 2023

co cai nit tu di ma tinh

 

25 tháng 10 2020

1) \(1+4+4^2+4^3+...+4^{2012}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)

\(=21+21\cdot4^3+...+21\cdot4^{2010}\)

\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21

2) \(1+7+7^2+7^3+...+7^{101}\)

\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)

\(=8+8\cdot7^2+...8\cdot7^{100}\)

\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8

3) CM chia hết cho 5:

\(2+2^2+2^3+2^4+...+2^{100}\)

\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)

\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)

\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5

CM chia hết cho 31:

\(2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\cdot31+...+2^{96}\cdot31\)

\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31

19 tháng 11 2023

Rrffhvyccbvfccvbbbhhgg

20 tháng 10 2022

Sửa đề: \(B=2+2^2+2^3+...+2^{100}\)

\(=2\left(1+2+2^2+2^3\right)+2^5\cdot\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{97}\right)⋮5\)

\(B=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\left(2+2^6+...+2^{96}\right)⋮31\)

17 tháng 10 2018

did you studied at le van tam primary school

17 tháng 10 2018

giúp với mình đang cần gấp

11 tháng 3 2015

gọi A = 2+2^2+2^3+......+2^100

A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+......+(2^97+2^98+2^99+2^100)

A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+......+(2^97+2^98+2^99+2^100)

A=(2+2^2+2^3+2^4).1+(2+2^2+2^3+2^4).4+......+(2+2^2+2^3+2^4).98

A=            30.1          +         30.4             +.......+       30.98

A=                  30.(1+4+...+98)

Vì 30 chia hết cho 3

=>30.(1+4+...98) chia hết cho 3

Hay 2+2^2+2^3+......+2^100 chia hết cho 3.