K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2015

2101+2102+2103

=23(298+299+2100)

=>(2101+2102+2103) chia hết cho (298+299+2100)

18 tháng 12 2014

Ta có : 2^101+2^102+2^103=2^98x2^3+2^99x2^3+2^100x2^3=(2^98+2^99+2^100)x2^3 chia hết cho 2^98+2^99+2^100.

a: \(a=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{101}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{101}\right)⋮3\)

b: \(a=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{100}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{100}\right)⋮7\)

14 tháng 7 2017

\(A=2^{100}+2^{101}+2^{102}+2^{103}+2^{104}+2^{105}\)

   \(=2^{100}.\left(1+2+2^2+2^3+2^4+2^5\right)=2^{100}.63\)

    \(=2^{100}.9.7⋮7\)

Vậy \(A=2^{100}+2^{101}+2^{102}+2^{103}+2^{104}+2^{105}⋮7\)

12 tháng 8 2018

a) Đặt biểu thức trên là A, ta có:

A = 21 + 22 + 23 + 24 + ... + 299 + 2100

=> A = (21 + 22) + (23 + 24) + ... + (299 + 2100)

=> A = 21.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)

=> A = 21.3 + 23.3 + ... + 299.3

=> A = 3(21 + 23 + ... + 299)

=> A ⋮ 3

\(26=13.2\)

\(s=3.\left(1+3+9\right)+3^4.\left(1+3+9\right)+....+3^{2012}.\left(1+3+9\right)\)

\(s=3.13+3^413+.....+3^{2012}.13\)

\(s=13.\left(3+3^4+....+3^{2012}\right)\)

\(\Rightarrow s=3.\left(1+3\right)+3^3.\left(1+3\right)+.......+3^{2015}.\left(1+3\right)\)

\(s=3.4+3^3.4+....+3^{2015}.4\)

\(s=4.\left(3+3^3+.....+3^{2015}\right)\)

\(\Rightarrow4⋮2\Rightarrow4.\left(3+3^3+....+3^{2015}\right)⋮2\)

\(\Rightarrow s⋮2\Leftrightarrow s⋮13\)

\(\Rightarrow s⋮\orbr{\begin{cases}13\\2\end{cases}}\Leftrightarrow s⋮26\)

24 tháng 9 2015

Ta sẽ có ( 2100 + 2101 + 2102 ) : ( 297 + 298 + 299 )

= ( 2100 : 297 ) + ( 2101 : 298 ) + ( 2102 : 299 )

= 23 + 2+ 23

= 23 . 3

= 8 . 3

= 24

24 tháng 9 2015

=2100(1+2+22) : 297(1+2+22)

=2100:297=23=8

8 tháng 5 2016

Đây là chút lí thuyết về c/s tận cùng của 1 lũy thừa cơ số 3:

+, 3^4k = ...1

+, 3^(4k+1) = ....3

+, 3^(4k+2)=....9

+, 3^(4k+3) = ....7

Một số cphương thì ko có tận cùng là 2,3,7,8

Suy ra ta phân tích A như sau:

A = (1+3^4+...+3^100)+(3+3^5+...+3^101)+(3^2+3^6+...+3^102)+(3^3+...+3^99)

Suy ra c/s tận cùng của A chính là c/s tận cùng của:

1.101+3.101+9.101+7.100=2013

Suy ra A có c/s tận cùng là 3 

Suy ra A ko phải số cphương