K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

\(A=2+2^2+2^3+2^4+...+2^{59}+\)\(2^{60}\)

\(A=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{59}.\left(1+2\right)\)

\(A=\left(1+2\right)\left(2+2^3+...+2^{59}\right)\)

\(A=3.\left(2+2^3+...+2^{59}\right)⋮3\)

\(Vậy:A⋮3\)

22 tháng 2 2020

P/s: Sai đề ạ :<

Đặt \(A=2+2^2+2^3+2^4...+2^{59}+2^{60}\)

\(\Rightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(\Rightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(\Rightarrow A=2.3+2^3.3+...+2^{59}.3\)

\(\Rightarrow A=3\left(2+2^3+...+2^{59}\right)\)

Vì  \(3⋮3\Rightarrow3\left(2+2^3+...+2^{59}\right)⋮3\Rightarrow A⋮3\)

Vậy \(A⋮3\)

5 tháng 10 2021

A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259)  chia hết cho 3
=>A  chia hết cho 3
A= (2+22+23)+...+(258+259+260)
A=2.(1+2+22)+...+258.(1+2+22)
A=2.7+...+258.7
A=7.(2+...+258)
Vì 7  chia hết cho 7 =>7.(2+...+258)  chia hết cho 7

CHIA HẾT CHO 3 :

A= (2+22)+(23+24)+...+(259+260)

A=2.(1+2)+23.(1+2)+...+259.(1+2)

A=2.3+23.3+...+259.3

A=3.(2+23+...+259)

Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3

=>A chia hết cho 3


 

4 tháng 11 2021

dcv

28 tháng 2 2022

Đề sai, viết lại thành:

A= 21+22+23+24+...+259+260

Giải:

A=21+22+23+...............+259+260

A=(21+22+23)+...............+(258+259+260)

A=2.(1+2+22)+............+258.(1+2+22)

A=2.7+.......................+258.7

A=(2+24+..............+258).7 ⋮ 7(đpcm)

28 tháng 2 2022

umk

4 tháng 1

c) \(55-7.\left(x+3\right)=6\)

\(7.\left(x+3\right)=55-6\)

\(7.\left(x+3\right)=49\)

\(x+3=49:7\)

\(x+3=7\)

\(x=7-3\)

\(x=4\)

d) \(-14-x+\left(-15\right)=-10\)

\(-29-x=-10\)

\(x=-29+10\)

\(x=-19\)

-----------------------------

Số số hạng của A:

\(60-1+1=60\) (số)

Do \(60⋮6\) nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 6 số hạng như sau:

\(A=\left(2+2^2+2^3+2^4+2^5+2^6\right)+\left(2^7+2^8+2^9+2^{10}+2^{11}+2^{12}\right)+...+\left(2^{55}+2^{56}+2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4+2^5\right)+2^7.\left(1+2+2^2+2^3+2^4+2^5\right)+...+2^{55}.\left(1+2+2^2+2^3+2^4+2^5\right)\)

\(=2.63+2^7.63+...+2^{55}.63\)

\(=63.\left(2+2^7+...+2^{55}\right)\)

\(=21.3.\left(2+2^7+...+2^{55}\right)⋮21\)

Vậy \(A⋮21\)

4 tháng 1

55-7(x+3)=6

7(x+3)=55-6=49

(x+3)=49:7=7

x=7-3=4

(-14)-x + (-15)=-10

(-14)-x=-10-15=-25

x           =-14-25=-39 

A chia hết 31 chứ

3 tháng 10 2021

giúp mik với bucminh

3 tháng 10 2021

\(A=2^0+2^1+2^2+...+2^{59}\)

\(=2^0\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{57}\left(1+2+2^2\right)\)

\(=2^0.7+2^3.7+...+2^{57}.7\)

\(=7\left(2^0+2^3+...+2^{57}\right)⋮7\)

 

2 tháng 11 2023

loading...

2 tháng 11 2023

Sửa dùm mình dòng cuối cùng là " Vậy \(A⋮5\) " nha. Cảm ơn bạn.

Đề thiếu rồi bạn

14 tháng 12 2022

a: \(2A=2^2+2^3+...+2^{61}\)

=>A=2^61-2

b: \(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{55}+2^{58}\right)\) chia hết cho 7(1)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)=3\left(2+2^3+...+2^{59}\right)⋮3\left(2\right)\)

Từ (1), (2) suy ra A chia hết cho 21

6 tháng 10 2023

\(S=1+2+2^2+2^3+...+2^{59}\)

\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{58}+2^{59}\right)\)

\(S=3+2^2\cdot3+...+2^{58}\cdot3\)

\(S=3\cdot\left(1+2^2+...+2^{58}\right)\)

S chia hết cho 3

_____

\(S=1+2+2^2+...+2^{59}\)

\(S=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{57}+2^{58}+2^{59}\right)\)

\(S=7+7\cdot2^3+...+7\cdot2^{57}\)

\(S=7\cdot\left(1+2^3+...+2^{57}\right)\)

S chia hết cho 7 

_____

\(S=1+2+2^2+2^3+...+2^{59}\)

\(S=\left(1+2+2^2+2^3\right)+\left(2^4+2^5+2^6+2^7\right)+...+\left(2^{56}+2^{57}+2^{58}+2^{59}\right)\)

\(S=15+2^4\cdot15+...+2^{56}\cdot15\)

\(S=15\cdot\left(1+2^4+...+2^{56}\right)\)

S chia hết cho 15 

11 tháng 10 2023

\(B=2\left(1+2+2^2+...+2^{58}+2^{59}\right)⋮2\)

\(B=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

\(B=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{58}\right)⋮7\)

\(B=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{57}\right)⋮15\)

11 tháng 10 2023

không phải như vậy đâu bạn