Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+....+\frac{3}{2010.2013}\right)\)
\(=\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{2010}-\frac{1}{2013}\right)\)
\(=\frac{1}{3}\left(1-\frac{1}{2013}\right)=\frac{1}{3}.\frac{2012}{2013}<\frac{1}{3}.1=\frac{1}{3}\)
\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)
\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)
\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)
\(<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(<1-\frac{1}{2010}\)
\(<\frac{2009}{2010}<1\)
=>N<1
a.A= 3+ 32+ 33 + 34 +...+310
Ta có :A= 3 + 32 + 33 + 34 + ... +310
A= 3+ 9+ 27+ 81+ ...+310
A= (3 +9)+(33 + 34)+(35 + 36)+...+(39 + 310)
A= 12 + (32 X 3 +32 X 32) + (34 X 3 + 34 X 32) + ...+ (38 X 3 + 38 X 32)
A= 12 + [32 X (3 + 32)] + [34 X (3+32)] + ....+ [38X(3 + 32)]
A= 12 + 32 X 12 + 34 X 12 + .... + 38 X 12
A= 12 X (1 + 32 + 34 + ... + 38)
Vì 12 chia hết cho 4 nên A chia hết cho 4
A=\(\frac{10^8+2}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=1+\frac{3}{10^8-3}\)
Vì\(10^8-1>10^8-3\)
\(\Rightarrow\frac{3}{10^8-1}< \frac{3}{10^8-3}\)
\(\Rightarrow1+\frac{3}{10^8-1}< 1+\frac{3}{10^8-3}\)
Vậy \(A< B\)
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\) < 1
\(S=3\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{40.43}+\frac{1}{43.46}\right)\)
\(S=3.\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\right)\)
\(\Rightarrow S=1-\frac{1}{46}\Rightarrow S< 1\left(đpcm\right)\)
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
= \(1-\frac{1}{46}< 1\)
\(\Rightarrow S< 1\left(đpcm\right)\)
\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(=1-\frac{1}{46}< 1\)
Vậy \(S< 1\)
Chúc bạn học tốt !!!
Xin ghi lại đề
\(CMR:\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2010.2013}< \frac{1}{3}\)
Và mình tuyên bố
\(Mik\)\(ko\)làm được
Đáng lẽ trên tử là 3