\(1-\frac{1}{2}\))(\(1-\frac{1}{3}\))(
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2018

(1-1/2)(1-1/3)(1-1/4)....(1-1/2018)<1

=(1-1/2)(1-1/3)(1-1/4).....(1-1/2018)

=1/2 x 2/3 x 3/4 ...... 2017/201

=1/2018

Vì 1/2018 <nên (1-1/2)(1-1/3)(1-1/4)....(1-1/2018) <1

19 tháng 4 2018

ở chỗ: 1/2 x 2/3 x 3/4 ..... 2017/2018. Mình viết thiếu số 8 nhé

a, M=1/1.2+1/2.3+...+1/49.50
M=1−1/2+1/2−1/3+...+1/49−1/50
M=1−1/50<1

Vậy M<1

16 tháng 6 2019

\(a,\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}< 1\)

\(=>M< 1\)

11 tháng 5 2018

\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}< 1\)

\(\Rightarrow A< 1\)

11 tháng 5 2018

Ta có : 

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{10^2}< \frac{1}{9.10}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow A< 1-\frac{1}{10}\)

\(\Rightarrow A< 1\left(đpcm\right)\)

Vậy \(A< 1\)

So sánh : A = \(\frac{1}{2^2}\)+ \(\frac{1}{3^2}\)+ \(\frac{1}{4^2}\)+ ..............+ \(\frac{1}{2018^2}\)với    B = \(\frac{75}{100}\)Ta có  \(\frac{1}{3^2}\)< \(\frac{1}{2.3}\)                   \(\frac{1}{4^2}\)< \(\frac{1}{3.4}\)               \(\frac{1}{2018^2}\)< \(\frac{1}{2017.2018}\)Suy ra : A < \(\frac{1}{2^2}\)+ \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+............................+ \(\frac{1}{2017.2018}\)Gọi biểu...
Đọc tiếp

So sánh : A = \(\frac{1}{2^2}\)\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+ ..............+ \(\frac{1}{2018^2}\)với    B = \(\frac{75}{100}\)

Ta có  \(\frac{1}{3^2}\)\(\frac{1}{2.3}\)                   \(\frac{1}{4^2}\)\(\frac{1}{3.4}\)               \(\frac{1}{2018^2}\)\(\frac{1}{2017.2018}\)

Suy ra : A < \(\frac{1}{2^2}\)\(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+............................+ \(\frac{1}{2017.2018}\)

Gọi biểu thức \(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+ ............... +  \(\frac{1}{2017.2018}\)là C 

\(\Rightarrow\)A < \(\frac{1}{2^2}\) +  C = \(\frac{1}{4}\) +  \(\frac{1}{2}\)-  \(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)+ ...................+ \(\frac{1}{2017}\)-   \(\frac{1}{2018}\)=  \(\frac{1}{4}\)+  \(\frac{1}{2}\)-  \(\frac{1}{2018}\)

\(\Rightarrow\)A < ( \(\frac{1}{4}\)+  \(\frac{1}{2}\))    -   \(\frac{1}{2018}\) = \(\frac{3}{4}\) - \(\frac{1}{2018}\)\(\frac{3}{4}\)=  \(\frac{75}{100}\)

\(\Rightarrow\)A < B =  \(\frac{75}{100}\)( đpcm)

 

0
17 tháng 4 2019

Ta có: B = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}\)

          B  = \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{8.8}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}\)

        B < \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)

      B < \(1-\frac{1}{8}\) < 1

Vậy B < 1

17 tháng 4 2019

Gọi \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow A=1-\frac{1}{8}=\frac{7}{8}\)

Mà \(A=\frac{7}{8}< 1\left(1\right)\)

\(\frac{1}{1.2}>\frac{1}{2^2}\)

\(\frac{1}{2.3}>\frac{1}{3^2}\)

\(...\)

\(\Rightarrow A>B\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)

\(\Rightarrow B< 1\left(đpcm\right)\)

2 tháng 4 2019

Mình còn chưa học lớp 6 huhu

2 tháng 4 2019

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}< 1\)

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{49}-\frac{1}{50}< 1\)

\(S=1-\frac{1}{50}< 1\)

\(S=\frac{49}{50}< 1\left(đpcm\right)\)

6 tháng 7 2020

Ta có: \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};\frac{1}{4^2}< \frac{1}{3\cdot4};....;\frac{1}{100^2}< \frac{1}{99\cdot100}\)

\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}< 1\left(đpcm\right)\)

Ta có : \(\frac{1}{2^2}=\frac{1}{4}< \frac{1}{1.2}\)

\(\frac{1}{3^2}=\frac{1}{9}< \frac{1}{2.3}\)

\(\frac{1}{4^2}=\frac{1}{16}< \frac{1}{3.4}\)

....

\(\frac{1}{100^2}=\frac{1}{10000}< \frac{1}{99.100}\)

Suy ra : \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

 \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy ta có đpcm 

11 tháng 4 2017

ta có B= 1/31+1/32+1/33+...+1/60

=> B=(1/30+1/30+...+1/30) + (1/40+1/40+1/40+...+1/40)

          10 số hạng                        10 số hạng

=> B< 10/30+10/40+10/50

=> = 1/3+1/4+1/5

=> = 47/60

=> B< 47/60 < 48/60= 4/5

Vế 2 tự làm nha bà

9 tháng 4 2017

cần tau giúp ko con tê

9 tháng 4 2018

\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy \(A< 1\)

Chúc bạn học tốt ~