Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(d=ƯCLN\left(n+5;n+6\right)\)
\(\Leftrightarrow\hept{\begin{cases}n+5⋮d\\n+6⋮d\end{cases}}\)
\(\Leftrightarrow1⋮d\)
\(\LeftrightarrowƯCLN\left(n+5;n+6\right)=1\)
Vậy phân số \(\frac{n+5}{n+6}\) là phân số tối giản
các câu còn lại tương tự nhé b!
chúc b hc tốt
Gọi d ∈ ƯCLN (2n + 1; 2n + 3) nên ta có :
2n + 1 ⋮ d và 2n + 3 ⋮ d
=> (2n + 3) - (2n + 1) ⋮ d
=> 2n + 3 - 2n - 1 ⋮ d
=> 2 ⋮ d => d = { 1; 2 }
Mà 2n + 1 và 2n + 3 là các số lẻ nên ko có ước là 2
=> d = 1
Vì ƯCLN (2n + 1; 2n + 3) = 1 => \(\frac{2n+1}{2n+3}\) là phân số tối giản
Gọi d là ƯCLN của n + 5 , n + 6
=> n + 5 chia hết cho d và n +6 chia hết cho d
=> n + 6 - n - 5 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy n + 5/n+6 tối giản
Gọi \(d=ƯCLN\left(5n+7;3n+4\right)\)
\(\Leftrightarrow\hept{\begin{cases}5n+7⋮d\\3n+4⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}15n+21⋮d\\15n+20⋮d\end{cases}}\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(5n+7;3n+4\right)=1\)
Vậy .................
Gọi d là ƯC của tử và mẫu đã cho
Vì n+1 chia hết cho d nên 2.(n+1) chia hết cho d tức 2n +2 chia hết cho d
Ta có: (2n+3) - (2n+2) = 1 chia hết cho d
Do đó d có giá trị lớn nhất là 1
Vì ƯCLN (2n+2, 2n+3)=1 tức ƯCLN(n+1, 2n+3)=1 nên A là phân số tối giản
Bạn ơi có sai đề không?Bởi nếu n là số lẻ thì cả n+1 và n+3 đều là số chẵn ,đều chia hết cho 2 và có thể rút gọn mà,sao là phân số tối giản được
Đặt \(d=\left(n+1,3n+2\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+1,4n+3\right)\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
đặt:ƯCLN của 2n + 3/3n +4 là d (d thuộc(nên viết kí hiệu) Z
suy ra (2n+3)chia hết cho (kí hiệu) d
(3n+4)chia hết cho d
suy ra 3.(2n + 3)chia hết cho d
2.(3n +4)chia hết cho d
suy ra 3.2n+3.3chia hết cho d
2.3n+2.4chia hết cho d
suy ra 6n+9 chia hết cho d
6n +8 chia hết cho d
suy ra (6n+9)-(6n+8)chia hết cho d
suy ra 1chia hết cho d
suy ra d =1
vậy 2n+3/3n+4
Gọi d là ƯCLN (2n+3, 3n+4) (d\(\in\)N*)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\frac{2n+3}{3n+4}\)là phân số tối giản
Gọi \(ƯCLN\left(2n+3;3n+4\right)\) là \(d\)
\(\Rightarrow\) \(\left(2n+3\right)⋮d\) và \(\left(3n+4\right)⋮d\)
\(\Rightarrow\) \(3\left(2n+3\right)⋮d\)và \(2\left(3n+4\right)⋮d\)
\(\Rightarrow\)\(\left(6n+9\right)⋮d\) và \(\left(6n+8\right)⋮d\)
\(\Rightarrow\)\(\left(6n+9\right)-\left(6n+8\right)⋮d\)
\(\Rightarrow\)\(\left(6n-6n+9-8\right)⋮d\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)\)
Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)
Suy ra \(ƯCLN\left(2n+3;3n+4\right)=\left\{1;-1\right\}\)
Vậy \(\frac{2n+3}{3n+4}\) là phân số tối giản
Gọi d là ƯCLN của 2n + 3 và 2n + 4
Khi đó ; 2n + 3 chia hết cho d : 2n + 4 chia hết cho d
=> 2n + 4 - (2n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy phân số 2n + 3 / 2n + 4 tối giản
Gọi \(d=ƯCLN\left(2n+3;2n+4\right)\)
\(\Leftrightarrow\hept{\begin{cases}2n+3⋮d\\2n+4⋮d\end{cases}}\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(2n+3;2n+4\right)=1\)
=> phân số 2n+3/2n+ 4 là phân số tối giản