
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt UCLN(n + 1 ; 3n +4) = d
n + 1 chia hết cho d
< = > 3n + 3 chia hết cho d
< = > [(3n + 4)-(3n+3)] chia hết cho d
< = > (3n + 4 - 3n -3 ) chia hết cho d
1 chia hết cho d => d= 1
Vậy n + 1 ; 3n +4 là 2 số nguyên tố cùng nhau

a) Gọi d là ƯCLN (n;n+1) (\(d\inℕ^∗\))
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}\Rightarrow n+1-n⋮d\Rightarrow1⋮d}\)
Mà \(d\inℕ^∗\)=> d=1 => ƯCLN (n;n+1)=1
=> n; n+1 nguyên tố cùng nhau với \(n\inℕ\)(đpcm)
b) Gọi d là ƯCLN (n+1; 3n+4) \(\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n+1\right)⋮d\\3n+4⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3n+3⋮d\\3n+4⋮d\end{cases}}}\)
=> (3n+4)-(3n+3) chia hết cho d
=> 1 chia hết cho d. Mà d thuộc N*
=> d=1
=> ƯCLN (n+1; 3n+4)=1
=> n+1 và 3n+4 nguyên tố cùng nhau với \(n\inℕ\)
c) Gọi d là ƯCLN (2n+1;3n+2) \(\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}}\)
=> (6n+4)-(6n+3) chia hết cho d
=> 1 chia hết cho d. Mà d thuộc N*
=> d=1 => ƯCLN (2n+1; 3n+2)=1
=> 2n+1; 3n+2 nguyên tố cùng nhau với n\(\in\)N

goi UCLN(n,2n+1)=d
=>n chia hết cho d
2n+1 chia hết cho d
=>2n chia hết cho d
2n+1 chia hết cho d
=>(2n+1)-(2n) chia hết cho d
=>1 chia hết cho d
=>UCLN(n,2n+1)=1
=> n và 2n +1 là 2 số nguyên tố cùng nhau
vay ...

Gọi ƯCLN(2n+1 ; n ) là d
=> ( 2n + 1 ) - 2n \(⋮\) d
=> 1 \(⋮\) d
=> d = 1
Vậy ..........

- Nếu n là số chẵn thì n + 1 là số chẵn => 3n + 4 là số lẻ.
- Nếu n là số lẻ thì 3n + 4 là số chẵn => n + 1 là số lẻ.
Vậy, n + 1 là 3n + 4 là hai số nguyên tố cùng nhau.
gọi a là Ucln của 3n+4 và n+1
3n+4:a
n+1=3(n+1):a+3n+3
Vậy (3n+4)-(3n+3) :a
3n+4-3n-3 :a
=1:a
Vậy 3n+4 và n+1 là số nguyên tố cùng nhau

Gọi d là ƯCLN(n+1,3n+2)
=> n+1 chia hết cho d => 3(n+1) chia hết cho d => 3n+3 chia hết cho d
3n+2 chia hết cho d
=> [(3n+3)-(3n+2)] chia hết cho d
1 chia hết cho d
=> d thuộc {-1;1}
mà d lớn nhất => d = 1
=> ƯCLN(n+1,3n+2) = 1
=> n+1 và 3n+2 là 2 số nguyên tố cùng nhau (đpcm)
Đặt UCLN ( n + 2 ; n + 1 ) = d
=> n + 2 chia hết cho d ; n + 1 chia hết cho d
=> n + 2 - n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> n + 2 và n + 1 là 2 số nguyên tố cùng nhau