Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(x^2+10x+26+y^2+2y=(x^2+10x+25)+(y^2+2y+1)\)
..................................................= \(\left(x+5\right)^2+\left(y+1\right)^2\)
b) \(z^2-6z+5-t^2-4t=(z^2-6t+9)-(t^2+4t+4)\)
............................................= \(\left(z-3\right)^2-\left(t+2\right)^2\)
c) \(x^2-2xy+2y^2+2y+1=(x^2-2xy+y^2)+(y^2+2y+1)\)
..................................................= \(\left(x-y\right)^2+\left(y+1\right)^2\)
d) \(4x^2-12x-y^2+2y+8=\left(4x^2-12x+9\right)-\left(y^2-2y+1\right)\)
.................................................= \(\left(2x-3\right)^2-\left(y-1\right)^2\)
Bài 2:
a) \(\left(x+y+4\right)\left(x+y-4\right)=\left(x+y\right)^2-16\)
b) \(\left(x-y+6\right)\left(x+y-6\right)=x^2-\left(y-6\right)^2\)
c) \(\left(y+2z-3\right)\left(y-2z+3\right)=y^2-\left(2z-3\right)^2\)
d) \(\left(x+2y+3z\right)\left(2y+3z-x\right)=\left(2y+3z\right)^2-x^2\)
Nhân phân phối là ra thôi
a)
\(VT=\left(x-1\right)\left(x+1\right)=x.x+x.1-1.x+\left(-1\right).1\)
\(=\left(x^2-1\right)+\left(x-x\right)=x^2-1+0=x^2-1=VP\Rightarrow dccm\)
c) thay vì c/m A=B ta chứng Minh B=A
\(VP=\left(x+1\right)\left(x^2-x+1\right)=\left(x^3-x^2+x\right)+\left(x^2-x+1\right)\)
\(=\left(x^3+1\right)+\left(-x^2+x^2\right)+\left(x-x\right)=x^3+1+0+0=x^3+1=VT\Rightarrow VT=VP\Rightarrow dpcm\)\(=x^3+1+0+0=x^3+1=VT\Rightarrow VT=VP\Rightarrow dpcm\)
A = 3x2y + 6x2y +3xy3
= 3xy (x2 + 2xy + y2) ( rút 3xy ra làm nhân tử chung )
=> A = B ( đpcm)
Ta có: \(P+Q=x^2y^2-x^3-2xy^2+2+x^3+2xy^2-2xy-1=x^2y^2-2xy+1=\left(xy-1\right)^2\ge0\forall x;y\in R\)
=> Trong P và Q luôn có ít nhất 1 đa thức có giá trị lớn hơn 0 với mọi x,y thuộc tập R
Vậy không tồn tại x;y để P và Q cùng âm
a) Thay x = 1 ; y = –1 và z = –2 vào biểu thức ta được:
2xy(5x2y + 3x – z) = 2.1(–1).[5.12.(–1) + 3.1 – (–2)]
= -2[–5 + 3 +2] = –2.0 = 0
Vậy đa thức có giá trị bằng 0 tại x = 1 ; y = –1 và z = –2.
b) Thay x = 1 ; y = –1 và z = –2 vào biểu thức ta được:
xy2 + y2z3 + z3x4 = 1.(–1)2 + (–1)2(–2)3 + (–2)3.14
= 1 + (–8) + (–8) = –15
Vậy đa thức có giá trị bằng -15 tại x = 1 ; y = –1 và z = –2.
a) Thay x = 1 ; y = –1 và z = –2 vào biểu thức ta được:
2xy(5x2y + 3x – z) = 2.1(–1).[5.12.(–1) + 3.1 – (–2)]
= -2[–5 + 3 +2] = –2.0 = 0
Vậy đa thức có giá trị bằng 0 tại x = 1 ; y = –1 và z = –2.
b) Thay x = 1 ; y = –1 và z = –2 vào biểu thức ta được:
xy2 + y2z3 + z3x4 = 1.(–1)2 + (–1)2(–2)3 + (–2)314
= 1 + (–8) + (–8) = –15
Vậy đa thức có giá trị bằng -15 tại x = 1 ; y = –1 và z = –2.
B=(y2-x)2=y4-2xy2+x2
Mà A=x2-2xy+y4
=> A=B
Vậy A=B