\(n^2+n+1\)không chia hết cho 2 và 5 ( n thuộc số tự nhiên ) 

g...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2018

Ta có:

\(B=n^2+n+1\)

\(=n\left(n+1\right)+1\)

Do n là số tự nhiên nên n(n+1) là tích của hai số tự nhiên liên tiếp

\(\Rightarrow n\left(n+1\right)⋮2\)

1 không chioa hết cho 2 nên B k chia hết cho 2

30 tháng 7 2018

a)ta có 74n-1 = (74)n-1 = 2401n - 1 = ...1-1=...0   \(⋮\) 10 { vì 2041 có tận cùng bằng 1 nên 2041 mũ mấy cũng có tận cùng bằng 1 nên 2041n có tận cùng bằng 1}

b) ta có 92n+1+1 = (92). 9 + 1 = 81n .9 +1 = ..1 .9 +1=..9+1=..0   \(⋮\)10 { vì 81 có tận cùng bằng 1 nên 81 mũ mấy cũng có tận cùng bằng 1 nên 81n có tận cùng bằng 1}

cho mik mik giải nốt bài 2 cho

29 tháng 10 2020

LEU LEU KO

12 tháng 8 2018

6n + 25 : 2n + 1 ( dấu " : " là chia hết cho nhé )

6n + 1 + 24 : 2n + 1

mà 6n + 1 : 2n + 1 => 24 : 2n + 1 => 2n + 1 thuộc Ư ( 24 ) = { 1; 2; 3; 4; 6; 8; ..... }

Bạn xét hết các ước của 24 ra ( cả số âm ) rồi lập bảng tìm n là xong

học tốt ^^

12 tháng 8 2018

Ta có : 6n + 25 = 3(2n + 1) + 22

Do 2n + 1 \(⋮\)2n + 1

Để 6n + 25  \(⋮\)2n + 1 thì 22 \(⋮\)2n + 1 => 2n + 1 \(\in\)Ư(22) = {1; 2; 11; 22}

Lập bảng :

 2n + 1 1 2 11 22
      n  0 ko thõa mãn 5 ko thõa mãn

Vậy n = {0; 5} thì 6n + 25 \(⋮\)2n + 1

29 tháng 3 2018

câu 1hinhf như sai đề

Tớ nghĩ là S= 30 + 3+ 34 +3+...+ 32002

thì đúng hơn

29 tháng 3 2018

sory. đề bài 1 là \(S=3^0+3^2+3^4+.....+3^{2002}\)

11 tháng 10 2018

ket qua la 12

10 tháng 1 2018

Giả sử n2+5n+5 chia hết cho 25

=> n2+5n+5 chia hết cho 5

=> n2 chia hết cho 5 (vì 5n+5 chia hết cho 5)

Mà 5 là số nguyên tố

=> n chia hết cho 5

=> n = 5k (k thuộc N)

Ta có: n2 + 5n + 5 = (5k)2 + 5.5k + 5 = 25k2 + 25k + 5 

Vì 25k2 + 25k chia hết cho 25, 5 không chia hết cho 25

=> 25k2 + 25k + 5 không chia hết cho 25 hay n2 + 5n + 5 không chia hết cho 25

=> giả sử sai

Vậy...

10 tháng 1 2018

mk thk thì mk lm thui

23 tháng 2 2018

Ta có: \(n^2+n=n\left(n+1\right)\) là 2 số tự nhiên liên tiếp nên có chữ số tận cùng là 0; 2; 6 

Do đó \(n^2+n+2011=n\left(n+1\right)+2011\)có chữ số tận cùng là 1; 3; 7\(\Rightarrow n^2+n+2011\)không chia hết cho 2

Suy ra \(n^2+n+2011\)không chia hết cho 2012 (đpcm)

23 tháng 2 2018

thanks bạn

12 tháng 8 2018

3n + 19 : n - 1

3n - 1 + 20 : n - 1

mà 3n - 1 : n - 1 => 20 : n - 1 => n - 1 thuộc Ư(20) = { 1; 2; 5; 10; 20; -1; -2; -5; -10; -20 }

sau đó tìm n ( như kiểu tìm x ) với các giá trị trên là xong

học tốt ^^

2 tháng 1 2019

5, 

Ta có :n2 + n + 6 = n(n + 1 ) + 6

Ta có : n( n +1 ) là tích của 2 số tự nhiên liên tiếp

=> n(n+1) không có c/s tận cùng là 9 và 4

=> n(n+1)+6 không có c/s tận cùng là 0 hoặc 5 ( vì đề bài yêu cầu là không chia hết cho 5 )

Vậy n2+ n+ 6 không chia hết cho 5 với mọi n thuộc N

2 tháng 1 2019

6, 

Ta có: 012,137,262,387,512,637,762,887 là các số có tận cùng chia cho 125 dư 12

Từ các số trên, ta chọn ra số có tận cùng chia cho 8 dư 3

Số có tận cùng là 387 thì chia cho 8 sẽ dư 3

=> các số có tận cùng là 387