K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2+2^2+2^3+....+2^{60}\)

\(=\left(2+2^2+2^3\right)+2^3\left(2+2^2+2^3\right)+......+2^{57}\left(2+2^2+2^3\right)\)

\(=\left(2+2^2+2^3\right)\left(1+2^3+...+2^{57}\right)\)

\(=15\left(1+2^3+....+2^{57}\right)\)chia hết cho 15

23 tháng 2 2020

CMR : a2 lớn hơn hoặc bằng 0

Nếu a là 0 thì a2 = 0

Nếu a ∈ N* thì a2 > 0

☛ Vậy a ∈ N thì a2 ≥ 0

CMR : -a2 bé hơn hoặc bằng 0

Nếu a là 0 thì -a2 = 0

Nếu a ∈ N* thì -a2 < 0

☛ Vậy a ∈ N thì -a2 ≤ 0

*Trường hợp 1: a≠0

Ta có: \(a^2=a\cdot a=\left(-a\right)\cdot\left(-a\right)\)

Vì hai số cùng dấu nhân với nhau luôn ra số dương nên \(a^2>0\forall a\ne0\)(1)

*Trường hợp 2: a=0

Ta có: \(a^2=0^2=0\)

Do đó, \(a^2=0\forall a=0\)(2)

Từ (1) và (2) suy ra \(a^2\ge0\forall a\)

\(-a^2\le0\forall a\)

Vì a \(\inℤ\)nên có 2 trường hợp

TH1 : a là số nguyên âm

 \(\Rightarrow\)a có dạng là (-b)

Mà (-b)2 = (-b).(-b) = b.b - là số nguyên dương

Nên a2 \(\ge\)0

TH2 : a là số nguyên dương

\(\Rightarrow\)a2 là số nguyên dương

Nên a2 \(\ge\)0

_HT_

( Cho hỏi -a2 hay là (-a)2 ạ ? )