Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. aaa có dấu gạch trên đầu chia hết cho 37
Ta có aaa=a.37
aaa= a.3.37 chia hết cho 37
Hk tốt
abcabc=abc.1001=abc.91.11 chia hết cho 11
tich dung cho minh nha
abcabc = 1001 x abc
= 11 x 91 x abc
luôn luôn chia hết cho 11
Ta có: \(\overline{abcabc}=\overline{abc}.1000+\overline{abc}=\overline{abc}.\left(1000+1\right)\)
\(\Rightarrow\overline{abc}.1001=\overline{abc}.91.11\)
Vì \(11⋮11\Rightarrow\overline{abc}.91.11⋮11\)
Vậy số \(\overline{abcabc}\) lúc nào cũng chia hết cho 11
a)\(\overline{abcabc}=1001\cdot\overline{abc}=...\)chưa chứng minh được chia hết cho 3, bạn kiểm tra lại đề nhé.
Chắc là đề cho \(\overline{abc}⋮3\)
b)\(S=5+5^2+5^3+...+5^{2004}=\left(5^1+5^4+5^2+5^5+5^3+5^6\right)+...+\left(5^{1999}+..+5^{2001}+5^{2004}\right)\)
Cứ 2 số hạng liền kề nhau trong tổng trên đều chia hết cho 5+125=130, tức là đều chia hết cho 65.
Còn chứng minh chia hết cho 125 thì mình thấy hơi lạ, mình không làm được.
Chúc bạn học tốt!
abc abc=abc.1000+abc=abc.(1000+1)
=abc.1001=abc.91.11
vì 11 chia hết cho 11=>abc.91.11 chia hết cho 11
vậy số abcabc lúc nào cũng chia hết cho 11
\(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.91.11\)
\(\Rightarrow\overline{abcabc}⋮11\)
Vậy số có dạng \(\overline{abcabc}\)bao giờ cũng chia hết cho 11
Ta có \(abcabc=abc.1001=abc.91.11\) chia hết cho 11 (đpcm).
\(\vec{abcabc}=abc.1001=abc.97.11\)
Chia hết cho 11 => ĐPCM